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Deligne’s completeness theorem

A coherent topos is a topos of sheaves for which there is a site on a
category with finite limits and where the Grothendieck topology has a
basis consisting of finite covering families.
A point of a topos E is a geometric morphism Set → E . The topos has
enough points if the collection of points is jointly surjective, i.e., the
inverse images of the points are jointly conservative. This means that for
two subobjects S, T of a given object, we have:

S ≤ T ⇐⇒ p∗(S) ≤ p∗(T ) for every point p

Theorem
(Deligne) A coherent topos has enough points.

Essentially equivalent to Gödel completeness theorem for first-order
classical logic.
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Generalizations

A separable topos is a topos of sheaves for which there is a site on a
category with countably many objects and morphisms, and where the
Grothendieck topology is generated by countably many covering families.

Theorem
(Makkai-Reyes) A separable topos has enough points.

Essentially equivalent to Karp completeness theorem for infinitary classical
logic over Lω1,ω. It also entails completeness of countably axiomatized
geometric theories.
GOAL: Replace ω by any cardinal κ with κ<κ = κ, obtaining thereby a
completeness theorem for infinitary classical logic over Lκ+,κ, and
moreover, for an intuitionistic fragment that we call κ-geometric.
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κ-geometric logic

Extension of geometric logic in which we have:

Arities of cardinality less than κ
Conjunction of less than κ many formulas
Existential quantification of less than κ many variables
More logical axioms or rules are needed.

Example: the theory of well-orderings:

> `xy x < y ∨ y < x ∨ x = y

∃x0x1x2...
∧

n∈ω
xn+1 < xn ` ⊥

López-Escobar: the theory of well-orderings is not axiomatizable in Lκ,ω
for any κ.
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κ-geometric logic

To summarize:
More expressive power will require more axioms
The new axioms in the κ-geometric fragment takes the form of a rule
of inference
The rule will correspond to an exactness property of the associated
category
This gives rise to κ-geometric categories
κ-geometric categories will have a κ-classifying topos

This leads us to the notion of κ-separable topos.
A κ-separable topos is a topos of sheaves for which there is a site on a
category with κ-small limits, at most κ many objects and morphisms,
where the basis for the Grothendieck topology is generated by at most
κ-many covering families and satisfying a further exactness property T .

Theorem
(E.) κ-separable toposes have enough κ-points.
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Christian Esṕındola (Postdoctoral researcher at Masaryk University)Infinitary generalizations of Deligne’s completeness theorem June 29th, 2018 5 / 13



κ-geometric logic
To summarize:

More expressive power will require more axioms
The new axioms in the κ-geometric fragment takes the form of a rule
of inference
The rule will correspond to an exactness property of the associated
category
This gives rise to κ-geometric categories

κ-geometric categories will have a κ-classifying topos
This leads us to the notion of κ-separable topos.
A κ-separable topos is a topos of sheaves for which there is a site on a
category with κ-small limits, at most κ many objects and morphisms,
where the basis for the Grothendieck topology is generated by at most
κ-many covering families and satisfying a further exactness property T .

Theorem
(E.) κ-separable toposes have enough κ-points.
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The exactness property T

Given a locale L, we would like to define points that in addition preserve
κ-small intersections. These correspond to κ-complete, completely prime
filters of L.
This leads us to a strong distributivity property:

φf `x
∨

g∈γβ+1,g |β=f
φg β < γ, f ∈ γβ

φf a`x
∧
α<β

φf |α β < γ, limit β, f ∈ γβ

φ∅ `x
∨

f ∈B

∧
β<δf

φf |β+1

This distributivity property implies κ-distributivity:∧
i<γ

∨
j<γ

aij →
∨

f ∈γγ

∧
i<γ

aif (i)

for each γ < κ. But it is strictly stronger than this. Example: ([0, 1],≤)
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The exactness property T

The strong distributivity property is the missing rule of inference: although
there are geometric theories which are consistent and have no models, the
addition of the distributivity property helps to derive > ` ⊥.
Example: given an uncountable set A, the theory of injections f : A→ N
does not have models:

Pa,n ∧ Pa,m ` ⊥ for all n,m, a with n 6= m

Pa,n ∧ Pb,n ` ⊥ for all n, a, b with a 6= b

> `
∨

n∈N
Pa,n for all a ∈ A

As a geometric theory, it is consistent. However, considered as a
κ-geometric propositional theory, it is inconsistent.
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The exactness property T

Consider a κ-chain in a category C with κ-limits, i.e., a diagram
Γ : γop → C specified by morphisms (hβ,α : Cβ → Cα)α≤β<γ with the
following condition:

the restriction Γ|β is a limit diagram for every limit ordinal β.

We say that the morphisms hβ,α compose transfinitely, and take the limit
projection fβ,0 to be the transfinite composite of hα+1,α for α < β.
There is an exactness condition on C that we call transfinite transitivity: if
we have a κ-tree of morphisms of C where the immediate successors of
every node form a jointly covering family, then the transfinite composites
of the morphisms along all possible cofinal branches of the tree forms itself
a jointly covering family.
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The exactness property T
We have now:

Definition
A κ-geometric category is a category with κ-small limits, complete
subobject lattices with stable unions and that satisfies the property T
(transfinite transitivity property), i.e., the transfinite composites up to κ of
jointly covering families of morphisms is itself jointly covering.

The property T corresponds to the logical rule of inference:

φf `yf

∨
g∈γβ+1,g |β=f

∃xgφg β < κ, f ∈ γβ

φf a`yf

∧
α<β

φf |α β < κ, limit β, f ∈ γβ

φ∅ `y∅

∨
f ∈B
∃β<δf xf |β+1

∧
β<δf

φf |β+1
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κ-geometric categories

Examples of κ-geometric categories:

Set
Presheaf toposes
Sheaves on a site with a κ-Grothendieck topology: site on a category
with κ-small limits and where transfinite composites of covering
families are covering
The syntactic category of any κ-geometric theory

There is a way of generating enough examples of κ-separable toposes:

Start with a category of size at most κ with κ-small limits
Choose κ many families over each object
Generate a κ-topology using property T as a closure condition on the
chosen families (this takes κ+ iterations)

Example/exercise: Any Grothendieck topology is an ω-topology (property
T is trivially satisfied).
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Main results and applications

κ-separable toposes have enough κ-points
Its associated completeness theorem for Lκ+,κ is best possible in
terms of the cardinalities of the theories involved
They coincide with the κ-classifying toposes of κ-geometric theories
with at most κ many axioms in canonical form
When κ is weakly compact, this is precisely κ-Deligne’s theorem. It is
essentially equivalent to Karp’s completeness theorem for Lκ,κ
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Main results and applications

When κ is weakly compact, the completeness of κ-coherent theories
allows to generalize to the infinitary case Joyal’s completeness
theorem for intuitionistic first-order logic
When κ is weakly compact, Stone type dualities for distributive
lattices can be generalized to the infinitary case obtaining as a result
completeness of infinitary intuitionistic first-order logic over Lκ+,κ

When κ is strongly compact, the completeness theorem provides a
generalization to the infinitary case of Makkai’s Stone duality for
first-order logic, under suitable large cardinal assumptions
Using Stone duality for infinitary first-order logic it is possible to
prove a descent theorem for κ-pretoposes. This entails both a local
and a global definability theorem for infinitary logic
The κ-classifying topos allows to generalize to the infinitary case
Awodey-Forssell duality for decidable κ-coherent categories
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Christian Esṕındola (Postdoctoral researcher at Masaryk University)Infinitary generalizations of Deligne’s completeness theoremJune 29th, 2018 12 / 13



Main results and applications

When κ is weakly compact, the completeness of κ-coherent theories
allows to generalize to the infinitary case Joyal’s completeness
theorem for intuitionistic first-order logic
When κ is weakly compact, Stone type dualities for distributive
lattices can be generalized to the infinitary case obtaining as a result
completeness of infinitary intuitionistic first-order logic over Lκ+,κ

When κ is strongly compact, the completeness theorem provides a
generalization to the infinitary case of Makkai’s Stone duality for
first-order logic, under suitable large cardinal assumptions
Using Stone duality for infinitary first-order logic it is possible to
prove a descent theorem for κ-pretoposes. This entails both a local
and a global definability theorem for infinitary logic
The κ-classifying topos allows to generalize to the infinitary case
Awodey-Forssell duality for decidable κ-coherent categories
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Thank you!
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