Fibrations of toposes from extensions of theories

Toposes in Como

Sina Hazratpour

sinhp.github.io

29 June 2018
Idea

Johnstone fibrations in 2-categories

Fibrations of toposes from extension of theories

References
For many special constructions of topological spaces, a structure preserving morphism between the presenting structures gives a map between the corresponding spaces. e.g.: a homomorphism \(f : K \to L \) between two distributive lattices gives a map in the opposite direction between their spectra. The covariance or contravariance of this correspondence is a fundamental property of the construction.
For many special constructions of topological spaces, a structure preserving morphism between the presenting structures gives a map between the corresponding spaces. e.g.: a homomorphism \(f : K \to L \) between two distributive lattices gives a map in the opposite direction between their spectra. The covariance or contravariance of this correspondence is a fundamental property of the construction.

In topos theory we can relativize this process: a presenting structure in an elementary topos \(\mathcal{E} \) will give rise to a bounded geometric morphism \(p : \mathcal{F} \to \mathcal{E} \), where \(\mathcal{F} \) is the topos of sheaves over \(\mathcal{E} \) for the space presented by the structure. Then we commonly find that the covariant or contravariant correspondence mentioned above makes every such \(p \) an opfibration or fibration in the 2-category of toposes and geometric morphisms.

References

Using the classifying toposes of geometric theories, we formalize this idea by the notion of fibration of toposes.
• For many special constructions of topological spaces, a structure preserving
morphism between the presenting structures gives a map between the
Corresponding spaces. E.g.: A homomorphism $f : K \to L$ between two distributive
lattices gives a map in the opposite direction between their spectra. The
Covariance or contravariance of this correspondence is a fundamental property of
The construction.

• In topos theory we can relativize this process: A presenting structure in an
Elementary topos \mathcal{E} will give rise to a bounded geometric morphism $p : \mathcal{F} \to \mathcal{E}$,
Where \mathcal{F} is the topos of sheaves over \mathcal{E} for the space presented by the structure.
Then we commonly find that the covariant or contravariant correspondence
Mentioned above makes every such p an opfibration or fibration in the 2-category
Of toposes and geometric morphisms.

• This is one of the leading theme in Bas Spitters, Steven J. Vickers, and
Sander Wolters. “Gelfand spectra in Grothendieck toposes using geometric
For many special constructions of topological spaces, a structure preserving morphism between the presenting structures gives a map between the corresponding spaces. E.g.: a homomorphism $f : K \to L$ between two distributive lattices gives a map in the opposite direction between their spectra. The covariance or contravariance of this correspondence is a fundamental property of the construction.

In topos theory we can relativize this process: a presenting structure in an elementary topos \mathcal{E} will give rise to a bounded geometric morphism $p : \mathcal{F} \to \mathcal{E}$, where \mathcal{F} is the topos of sheaves over \mathcal{E} for the space presented by the structure. Then we commonly find that the covariant or contravariant correspondence mentioned above makes every such p an opfibration or fibration in the 2-category of toposes and geometric morphisms.

This is one of the leading theme in Bas Spitters, Steven J. Vickers, and Sander Wolters. “Gelfand spectra in Grothendieck toposes using geometric mathematics.” In: Proceedings of QPL 2012 (2012).

Using the classifying toposes of geometric theories, we formalize this idea by the notion of fibration of toposes.
Johnstone fibrations in 2-categories
Comprehension 2-category

Suppose \(\mathbf{K} \) is a 2-category and \(\mathcal{D} \) is a class of bicarrable 1-cells in \(\mathbf{K} \) which we shall call “display 1-cells”. We form a 2-category \(\mathbf{K}_\mathcal{D} \) whose

- 0-cells are of the form

\[
\begin{array}{c}
\bar{x} \\
\downarrow \\
x \\
\downarrow \\
x
\end{array}
\]

where \(x \) is a member of class \(\mathcal{D} \).
Suppose \mathbb{K} is a 2-category and \mathcal{D} is a class of bicarrable 1-cells in \mathbb{K} which we shall call “display 1-cells”. We form a 2-category $\mathbb{K}_\mathcal{D}$ whose

- 0-cells are of the form

$$
\begin{array}{c}
\bar{x} \\
\downarrow x \\
\bar{x}
\end{array}
$$

where x is a member of class \mathcal{D}.

- 1-cells from y to x are of the form $f = \langle \bar{f}, f, \bar{f} \rangle$

$$
\begin{array}{c}
\bar{y} \xrightarrow{\bar{f}} \bar{x} \\
\downarrow \downarrow \downarrow \\
y \xrightarrow{f} x
\end{array}
$$

where $f : x \circ \bar{f} \Rightarrow \bar{f} \circ y$ is an iso 2-cell in \mathbb{K}.

Comprehension 2-category
• 2-cells between 1-cells f and g are of the form $\alpha = \langle \bar{\alpha}, \alpha \rangle$ where $\bar{\alpha} : \bar{f} \Rightarrow \bar{g}$ and $\alpha : f \Rightarrow g$ are 2-cells in \mathcal{K}

\[
\begin{array}{cccc}
\bar{y} & \bar{g} & \bar{x} \\
\downarrow & \bar{\alpha}/ & \uparrow \\
y & \bar{f} & g & \downarrow \\
\downarrow & \downarrow & \downarrow \\
\bar{y} & f & \bar{x} \\
\end{array}
\]

in such a way that the obvious diagram of 2-cells commutes.

• Composition: by pasting
K_D is a sub 2-category of K^\bot and the following diagram of 2-functors commutes.

$$
\begin{array}{ccc}
K_D & & K^\bot \\
& Base & Cod \\
\downarrow & & \downarrow \\
K & & Cod
\end{array}
$$
Definition (P. Johnstone, 93)

Suppose \mathbb{K} is a 2-category. A 1-cell $p: E \to B$ is an (internal) **fibration** in \mathbb{K} if it is bicarrable and for any 2-cell $\alpha: f \Rightarrow g: A \Rightarrow B$ in \mathbb{K}, there exists a 1-cell $r(\alpha): g^*E \to f^*E$, a 2-cell $\tilde{\alpha}: p^*f \circ r(\alpha) \Rightarrow p^*g$, and a 2-cell $\tau(\alpha): f^*p \circ r(\alpha) \Rightarrow g^*p$ satisfying **five axioms**.

![Diagram of fibrations in 2-categories](attachment:image.png)
Definition (P. Johnstone, 93)

Suppose \mathbb{K} is a 2-category. A 1-cell $p: E \to B$ is an (internal) **fibration** in \mathbb{K} if it is bicarrable and for any 2-cell $\alpha: f \Rightarrow g: A \Rightarrow B$ in \mathbb{K}, there exists a 1-cell $r(\alpha): g^*E \to f^*E$, a 2-cell $\tilde{\alpha}: p^*f \circ r(\alpha) \Rightarrow p^*g$, and a 2-cell $\tau(\alpha): f^*p \circ r(\alpha) \Rightarrow g^*p$ satisfying **five axioms**.
Johnstone’s fibrations in 2-categories

Definition (P. Johnstone, 93)

Suppose \(\mathcal{K} \) is a 2-category. A 1-cell \(p : E \to B \) is an (internal) **fibration** in \(\mathcal{K} \) if it is bicarrable and for any 2-cell \(\alpha : f \Rightarrow g : A \Rightarrow B \) in \(\mathcal{K} \), there exists a 1-cell \(r(\alpha) : g^*E \to f^*E \), a 2-cell \(\tilde{\alpha} : p^*f \circ r(\alpha) \Rightarrow p^*g \), and a 2-cell \(\tau(\alpha) : f^*p \circ r(\alpha) \Rightarrow g^*p \) satisfying five axioms.

Peter Johnstone. “Fibrations and partial products in a 2-category”. In: *Applied Categorical Structures* vol.1.2 (June 1993), pp. 141–179. DOI: 10.1007/BF00880041
Remark

- This definition generalizes the definition of Grothendieck fibration of categories.
- The definition above is equivalent to the representable definition of fibration internal to a 2-category.
- Dually, opfibrations are defined by requiring a 1-cell $l(\alpha) : f^* E \to g^* E$ in the opposite direction of $r(\alpha)$.
- Johnstone's definition does not require strictness of the 2-category nor the existence of the structure of strict pullbacks and comma objects. Indeed, this definition is most suitable for weak 2-categories such as 2-category of toposes where we do not expect diagrams of 1-cells to commute strictly. This definition is also very flexible in terms of existence of bipullbacks.
Changing the notation ...

\[\begin{array}{ccc}
 f^*E & \xrightarrow{p^*g} & E \\
 \downarrow{p^*f} & & \downarrow{p} \\
 A & \xrightarrow{g} & B \\
 \downarrow{\alpha} & & \downarrow{} \\
 A & \xrightarrow{f} & B
\end{array} \]

\[\begin{array}{ccc}
 \bar{X}g & \xrightarrow{\bar{g}} & \bar{X} \\
 \downarrow{\bar{r}_\alpha} & & \downarrow{} \\
 \bar{X}f & \xrightarrow{\bar{\alpha}} & \bar{X} \\
 \downarrow{} & & \downarrow{} \\
 Y & \xrightarrow{f} & X \\
 \downarrow{} & & \downarrow{} \\
 x & \xrightarrow{} & X
\end{array} \]
Simplifying Johnstone’s definition
Simplifying Johnstone’s definition
Simplifying Johnstone’s definition

\[
\begin{array}{c}
\text{Base} \\
\downarrow \\
\K \\
\downarrow \\
\K_D
\end{array}
\quad
\begin{array}{c}
x_f \\
\downarrow^f \\
x_g \\
\downarrow^{r_\alpha} \\
x \\
\downarrow^g \\
x
\end{array}
\quad
\begin{array}{c}
y \\
\downarrow^\alpha \\
y \\
\downarrow^f \\
x \\
\downarrow^g \\
x
\end{array}
\]
Simplifying Johnstone’s definition
Axioms of Johnstone fibration

1 α lies over α.

Axioms of Johnstone fibration

2 For any two composable 2-cells $\alpha : f \Rightarrow g$ and $\beta : g \Rightarrow h$ in \mathcal{K} where $f, g, h: y \to x$, the lift of their composition is canonically isomorphic to composition of their lifts α and β in \mathcal{K}_D, that is there exists a vertical iso 2-cell $\tau_{\alpha,\beta} : r_\alpha \circ r_\beta \Rightarrow r_{\beta\alpha}$ in \mathcal{K}_D such that $\beta \circ (\alpha \cdot r_\beta) \circ (f \cdot \tau_{\alpha,\beta}^{-1})$ is the lift of $\beta \circ \alpha$.

\[
\begin{array}{ccc}
x_h & \xrightarrow{r_\beta} & x_g \\
\downarrow & & \downarrow \\
r_{\beta\alpha} & \xleftarrow{\tau_{\alpha,\beta}} & x_f \\
\downarrow & & \downarrow \\
x & \xrightarrow{f} & x
\end{array}
\]
Axioms of Johnstone fibration

3. For any 1-cell $f : y \to x$ the lift of identity 2-cell on f is canonically isomorphic to the identity 2-cell on the lift f, that is there exists a vertical iso 2-cell $\tau_f : 1_f \Rightarrow r_{id_f}$ in \mathcal{K}_D such that $f \cdot \tau_f^{-1}$ is the lift of identity 2-cell id_f.

\[
\begin{array}{ccc}
X_f & \xrightarrow{\tau_f} & 1_f \\
\downarrow & & \downarrow \\
X_f & \xleftarrow{r_{id_f}} & X_f
\end{array}
\quad
f
\quad
X_f \xrightarrow{f} X
\]
Axioms of Johnstone fibration

4 lift of whiskering of any 2-cell \(\alpha: f \to g: y \to x \) with any 1-cell \(k: z \to y \) is isomorphic, via vertical iso 2-cells \(\gamma \) and \(\gamma' \), to whiskering of the lifts.
\textbf{Axioms of Johnstone fibration}

5 Given any pair of vertical 1-cells $v_0 : y \to x_f$ and $v_1 : y \to x_g$, any 2-cell $\gamma : f \circ v_0 \Rightarrow g \circ v_1$ factors through α uniquely, that is there exists a unique 2-cell $\mu : v_0 \Rightarrow r_\alpha v_1$ such that the following pasting diagrams are equal.

\[
\begin{array}{ccc}
 y & \xrightarrow{v_0} & x_f \\
 \downarrow v_1 & \Downarrow \gamma & \downarrow f \\
 x_g & \xrightarrow{g} & x
\end{array}
=
\begin{array}{ccc}
 y & \xrightarrow{v_0} & x_f \\
 \downarrow v_1 & \Downarrow \mu \downarrow & \downarrow f \\
 x_g & \xrightarrow{r_\alpha} & x
\end{array}
\]
(Weak) cartesian 1-cells

Definition

Suppose $P : X \to C$ is a 2-functor. A 1-cell $f : X \to Y$ in X is **cartesian** with respect to P whenever for each 0-cell W in X the following commuting square is a *bipullback* diagram in 2-category Cat of categories.

$$
\begin{array}{ccc}
X(W, X) & \xrightarrow{f_*} & X(W, Y) \\
\downarrow_{P_{W,X}} & & \downarrow_{P_{W,Y}} \\
C(PW, PX) & \xrightarrow{P(f)_*} & C(PW, PY)
\end{array}
$$
Cartesian 1-cells in elementary terms

Input data:
1. \(g : W \to Y \)
2. \(h : PW \to PX \)
3. iso 2-cell \(\alpha : P(f) \circ h \Rightarrow P(g) \)

Output data:
(*not necc. unique*)
1. \(\hat{h} : W \to X \)
2. iso 2-cell \(\hat{\alpha} : f \hat{h} \Rightarrow g \)
3. iso 2-cell \(\hat{\beta} : P(\hat{h}) \Rightarrow h \)
4. an equality of 2-cells
 \[\alpha \circ (P(f) \cdot \hat{\beta}) = P(\hat{\alpha}) \]
Idea

Johnstone fibrations in 2-categories

Fibrations of toposes from extension of theories

References

\[
\begin{align*}
\text{Input data:} & \\
1 & \sigma : g \Rightarrow g' : W \Rightarrow Y \\
2 & \delta : h \Rightarrow h' : PW \Rightarrow PX \\
3 & \text{iso 2-cells} \\
& \alpha : P(f) \circ h \Rightarrow P(g) \\
& \alpha' : P(f) \circ h' \Rightarrow P(g) \\
4 & \text{an equality of 2-cells} \\
& \alpha' \circ (Pf \cdot \delta) = P(\sigma) \circ \alpha
\end{align*}
\]

\[
\begin{align*}
\text{Output data:} & \\
1 & \text{unique } \hat{\delta} : \hat{h} \Rightarrow \hat{h}' \\
2 & \text{an equality } \hat{\alpha}' \circ (f \cdot \hat{\delta}) = \sigma \circ \hat{\alpha} \\
3 & \text{an equality } \delta \cdot (\hat{\beta}) = \hat{\beta}' \circ P\delta
\end{align*}
\]
Definition

A 2-cell $\alpha : f \Rightarrow g : x \to y$ in \mathbb{X} is **cartesian** if it is cartesian as a 1-cell for the functor $P_{xy} : \mathbb{X}(x, y) \to \mathbb{C}(P_x, P_y)$.
Definition

A 2-cell $\alpha : f \Rightarrow g : x \to y$ in \mathbf{X} is **cartesian** if it is cartesian as a 1-cell for the functor $\mathcal{P}_{xy} : \mathbf{X}(x, y) \to \mathbf{C}(\mathcal{P}x, \mathcal{P}y)$.

In elementary terms it means a 2-cell $\alpha : f \Rightarrow g : X \Rightarrow Y$ is cartesian if for any given 1-cell $e : X \to Y$ and 2-cell $\beta : e \Rightarrow g$ with $\mathcal{P}\alpha = \mathcal{P}\beta \circ \gamma$ for some 2-cell γ, then there is a unique 2-cell $\tilde{\gamma}$ over γ such that $\alpha = \beta \circ \tilde{\gamma}$.
Proposition

A 1-cell $x : \overline{x} \to \overline{x}$ in K is a Johnstone fibration iff

1. every $f : y \to x = \text{Cod}(x)$ has a cartesian lift,
2. for every 0-cell y in K_D, the functor
 $$\text{Cod}_{y,x} : K_D(y, x) \to K(\text{Cod}(y), \text{Cod}(x))$$
 is a Grothendieck fibration of categories, and
3. whiskering on the left preserves cartesian 2-cells in K_D between 1-cells with codomain x.
Relating internal fibrations in 2-categories to fibration of bicategories

Definition

Let $P : X \to C$ be a 2-functor. X is **fibred over** C whenever

1. for any $X \in X$ and $f : B \to PX$ in C, there is a weakly cartesian 1-cell $\tilde{f} : \tilde{B} \to X$ with $P\tilde{f} = f$;
2. P is locally fibred, i.e. $P_{XY} : X(X, Y) \to C(PX, PY)$ is a Grothendieck fibration of categories for all X, Y in X
3. The horizontal composite of any two cartesian 2-cells is again cartesian.
Relating internal fibrations in 2-categories to fibration of bicategories

Definition

Let $\mathcal{P}: \mathcal{X} \to \mathcal{C}$ be a 2-functor. \mathcal{X} is **fibred over** \mathcal{C} whenever

1. for any $X \in \mathcal{X}$ and $f: B \to \mathcal{P}X$ in \mathcal{C}, there is a weakly cartesian 1-cell $\tilde{f}: \tilde{B} \to X$ with $\mathcal{P}\tilde{f} = f$;
2. \mathcal{P} is locally fibred, i.e. $P_{XY}: \mathcal{X}(X, Y) \to \mathcal{C}(\mathcal{P}X, \mathcal{P}Y)$ is a Grothendieck fibration of categories for all X, Y in \mathcal{X}
3. The horizontal composite of any two cartesian 2-cells is again cartesian.

This definition is due to Buckley 2014 and he develops a theory of fibred bicategories in Mitchell Buckley. “Fibred 2-categories and bicategories”. In: vol. 218 (2014), pp. 1034–1074

The theory of fibred bicategories was also independently developed by Bakovic 2012 intrinsically to tricategories in Igor Bakovic. “Fibrations in tricategories”. In: 93rd Peripatetic Seminar on Sheaves and Logic, University of Cambridge (2012)
Relating internal fibrations in 2-categories to fibration of bicategories

Definition

Let $P : X \to C$ be a 2-functor. X is **fibred over** C whenever

1. for any $X \in X$ and $f : B \to PX$ in C, there is a weakly cartesian 1-cell $\tilde{f} : \tilde{B} \to X$ with $P\tilde{f} = f$;
2. P is locally fibred, i.e. $P_{XY} : X(X, Y) \to C(PX, PY)$ is a Grothendieck fibration of categories for all X, Y in X.
3. The horizontal composite of any two cartesian 2-cells is again cartesian.

This definition is due to Buckley 2014 and he develops a theory of fibred bicategories in Mitchell Buckley. “Fibred 2-categories and bicategories”. In: vol. 218 (2014), pp. 1034–1074.

The theory of fibred bicategories was also independently developed by Bakovic 2012 intrinsically to tricategories in Igor Bakovic. “Fibrations in tricategories”. In: 93rd Peripatetic Seminar on Sheaves and Logic, University of Cambridge (2012).

Remark

K_D is fibred over K if every 1-cell in K_D is a fibration in the sense of Johnstone.
2-categories (really bicategories) of toposes

- The 2-category $\mathcal{E}\mathsf{Top}$ is the 2-category of elementary toposes, geometric morphisms, and natural transformations.
- The 2-category $\mathcal{G}\mathsf{Top}$ is constructed from 2-category $\mathcal{E}\mathsf{Top}$ by choosing the class of display morphisms to be bounded geometric morphisms of elementary toposes. So, $\mathcal{G}\mathsf{Top} = \mathcal{E}\mathsf{Top}_D$ where D is the class of bounded geometric morphisms of elementary toposes.

\[
\begin{array}{ccc}
\mathcal{G}\mathsf{Top} & \xrightarrow{} & \mathcal{E}\mathsf{Top} \\
\downarrow & & \downarrow \\
\mathcal{E}\mathsf{Top} & \xleftarrow{} & \mathcal{G}\mathsf{Top}
\end{array}
\]

- A bounded geometric morphism $p: \mathcal{E} \to \mathcal{I}$ is a fibration of toposes if it is a fibration 0-cell in $\mathcal{G}\mathsf{Top}$.
Classifying toposes as representing objects

- Consider the pseudofunctor

\[
\mathcal{T}\text{-Mod} : (\mathcal{B}\text{Top}/S)^{\text{op}} \to \mathcal{C}at
\]
Classifying toposes as representing objects

- Consider the pseudofunctor

\[\mathbb{T}\text{-Mod} : (\mathcal{B}\text{Top}/S)^{op} \to \text{Cat} \]

- To an \(\mathcal{S} \)-topos \(\mathcal{E} \) it assigns the category \(\mathbb{T}\text{-Mod}\mathcal{E} \) of models \(\mathbb{T} \) in \(\mathcal{E} \).
Classifying toposes as representing objects

- Consider the pseudofunctor

\[\mathbb{T}\text{-Mod-}: (B\mathcal{Top}/S)^{op} \to \mathcal{Cat} \]

- To an \(\mathcal{J} \)-topos \(\mathcal{E} \) it assigns the category \(\mathbb{T}\text{-Mod-} \mathcal{E} \) of models \(\mathbb{T} \) in \(\mathcal{E} \).

- To a geometric morphism \(\langle f^*, f_* \rangle: \mathcal{F} \to \mathcal{E} \) of \(\mathcal{J} \)-toposes it assigns the functor \(f^*: \mathbb{T}\text{-Mod-} \mathcal{E} \to \mathbb{T}\text{-Mod-} \mathcal{F} \).
Classifying toposes as representing objects

• Consider the pseudofunctor

\[\mathbb{T}\text{-Mod} : (B\mathcal{Top}/S)^{op} \to \mathcal{Cat} \]

• To an \(\mathcal{S}\)-topos \(\mathcal{E} \) it assigns the category \(\mathbb{T}\text{-Mod}\mathcal{E} \) of models \(\mathbb{T} \) in \(\mathcal{E} \).

• To a geometric morphism \(\langle f^*, f_* \rangle : \mathcal{F} \to \mathcal{E} \) of \(\mathcal{S}\)-toposes it assigns the functor \(f^* : \mathbb{T}\text{-Mod}\mathcal{E} \to \mathbb{T}\text{-Mod}\mathcal{F} \).

• Note that \(\mathbb{T}\text{-Mod} (f \circ g) \cong (\mathbb{T}\text{-Mod} f) \circ (\mathbb{T}\text{-Mod} g) \)
Classifying toposes as representing objects

• Consider the pseudofunctor

\[\mathbb{T}\text{-Mod-} : (\mathcal{B}\mathcal{T}\text{op}/S)^{\text{op}} \to \text{Cat} \]

• To an \(\mathcal{I}\)-topos \(\mathcal{E}\) it assigns the category \(\mathbb{T}\text{-Mod-} \mathcal{E}\) of models \(\mathbb{T}\) in \(\mathcal{E}\).

• To a geometric morphism \(\langle f^*, f_* \rangle : \mathcal{F} \to \mathcal{E}\) of \(\mathcal{I}\)-toposes it assigns the functor \(f^* : \mathbb{T}\text{-Mod-} \mathcal{E} \to \mathbb{T}\text{-Mod-} \mathcal{F}\).

• Note that \(\mathbb{T}\text{-Mod-} (f \circ g) \cong (\mathbb{T}\text{-Mod-} f) \circ (\mathbb{T}\text{-Mod-} g)\)

• The classifying topos \(\mathcal{I}[\mathbb{T}]\) of a geometric theory/context \(\mathbb{T}\) can be seen as a representing object for this pseudofunctor, i.e.

\[\mathcal{B}\mathcal{T}\text{op}/\mathcal{I}(\mathcal{E}, \mathcal{I}[\mathbb{T}]) \cong \mathbb{T}\text{-Mod-} \mathcal{E} \]

naturally in \(\mathcal{E}\).
Fibrations of toposes from extension of theories
• Fix an elementary topos S. Every geometric theory/context T gives rise to an indexed category over $\mathbf{T} : \mathcal{B} \text{Top}/S$, where

$$\mathcal{T}(\mathcal{E}): = \mathbf{T-Mod}(\mathcal{E}) = \text{category of models of } T \text{ in } \mathcal{E}$$
• Fix an elementary topos S. Every geometric theory/context T gives rise to an indexed category over $T : \mathcal{B} \mathcal{T} \mathcal{op}/S$, where

$$\mathcal{T}(\mathcal{E}) : = T - \text{Mod}-(\mathcal{E}) = \text{category of models of } T \text{ in } \mathcal{E}$$

• Note that \mathcal{T} encapsulates data of all the models in all Grothendieck toposes (with base S). Vickers calls them ”elephant theories” after Johnstone, the sheer size of data encoded by them.

• Fix an elementary topos S. Every geometric theory/context T gives rise to an indexed category over $T : B\mathbf{Top}/S$, where

$$\mathbb{T}(E) : = T\text{-Mod}(E) = \text{category of models of } T \text{ in } E$$

• Note that T encapsulates data of all the models in all Grothendieck toposes (with base S). Vickers calls them ”elephant theories” after Johnstone, the sheer size of data encoded by them.

• Of course not all elephant theories arise from contexts. For instance, given a bounded geometric morphism $p : E \to \mathcal{S}$ and a context extension $U : T_1 \to T_0$ is a context extension and M is a strict model of context T in base topos S, then T_1/M is an elephant theory but not a context, where

$$T_1/M(E) : = \text{strict models of } T_1 \text{ in } E \text{ which reduce to } p^*M \text{ via } U$$
• Fix an elementary topos S. Every geometric theory/context \mathbb{T} gives rise to an indexed category over $\mathbb{T} : \mathcal{B} \mathcal{T} \mathcal{op} / S$, where

$$\mathbb{T}(\mathcal{E}) : = \mathbb{T} - \text{Mod} - (\mathcal{E}) = \text{category of models of } \mathbb{T} \text{ in } \mathcal{E}$$

• Note that \mathbb{T} encapsulates data of all the models in all Grothendieck toposes (with base S). Vickers calls them ”elephant theories” after Johnstone, the sheer size of data encoded by them.

• Of course not all elephant theories arise from contexts. For instance, given a bounded geometric morphism $p : \mathcal{E} \to \mathcal{S}$ and a context extension $U : \mathbb{T}_1 \to \mathbb{T}_0$ is a context extension and M is a strict model of context \mathbb{T} in base topos S, then \mathbb{T}_1 / M is an elephant theory but not a context, where

$$\mathbb{T}_1 / M(\mathcal{E}) : = \text{strict models of } \mathbb{T}_1 \text{ in } \mathcal{E} \text{ which reduce to } p^* M \text{ via } U$$

• Certain elephant theories are geometric and have classifying toposes. \mathbb{T} and \mathbb{T}_1 / M are such examples.
Theorem (Vickers, 2017)

Suppose $U : \mathbb{T}_1 \to \mathbb{T}_0$ is a context extension. For any model M of \mathbb{T}_0 in a (base) topos S, $S[\mathbb{T}_1/M]$ is an S-topos, and moreover, for any geometric (not necessarily bounded) morphism $f : A \to S$, the classifying topos $A[\mathbb{T}_1/f^*M]$ is got by bi-pullback of $S[\mathbb{T}_1/M]$ along f:

$$
\begin{array}{ccc}
A[\mathbb{T}_1/f^*M] & \xrightarrow{\bar{f}} & S[\mathbb{T}_1/M] \\
\downarrow^{p_f} & & \downarrow^p \\
A & \xrightarrow{f} & S
\end{array}
$$

Theorem (Vickers, 2017)

Suppose $U : \mathbb{T}_1 \to \mathbb{T}_0$ is a context extension. For any model M of \mathbb{T}_0 in a (base) topos S, $S[\mathbb{T}_1/M]$ is an S-topos, and moreover, for any geometric (not necessarily bounded) morphism $f : \mathcal{A} \to S$, the classifying topos $\mathcal{A}[\mathbb{T}_1/f^*M]$ is got by bi-pullback of $S[\mathbb{T}_1/M]$ along f:

$$
\begin{align*}
\mathcal{A}[\mathbb{T}_1/f^*M] & \xrightarrow{\overline{f}} S[\mathbb{T}_1/M] \\
p_f & \downarrow \\
\mathcal{A} & \xrightarrow{\overline{f}} S
\end{align*}
$$

Chevalley fibrations

- Suppose \mathcal{K} is a 2-category with finite (strict) PIE-limits, in other words those reducible to Products, Inserters and Equifiers.
- This is enough to guarantee existence of all strict comma objects.
Chevalley fibrations

- Suppose \mathcal{K} is a 2-category with finite (strict) PIE-limits, in other words those reducible to Products, Inserters and Equifiers.
- Suppose B is an object of \mathcal{K}, and p is a 0-cell in the strict slice 2-category \mathcal{K}/B. p is a **Chevalley fibration** if the 1-cell Γ_1 has a right adjoint Λ_1 with counit an identity in the 2-category \mathcal{K}/B.

![Diagram](image-url)
Chevalley fibrations

- Dually one defines Chevalley **opfibrations** as 1-cells $p : E \to B$ for which the morphism $\Gamma_0 : E^\perp \to p/B$ has a left adjoint Λ_0 with identity unit.
Chevalley fibrations

- Dually one defines Chevalley opfibrations as 1-cells $p: E \to B$ for which the morphism $\Gamma_0: E^\downarrow \to p/B$ has a left adjoint Λ_0 with identity unit.
- A bifibration is equipped with the structures of both a fibration and an opfibration.
Chevalley fibrations

- Dually one defines Chevalley **opfibrations** as 1-cells \(p : E \to B \) for which the morphism \(\Gamma_0 : E^\bot \to p/B \) has a left adjoint \(\Lambda_0 \) with identity unit.
- A bifibration is equipped with the structures of both a fibration and an opfibration.
- Gray 1966 showed that Chevalley fibrations in the 2-category \(\mathcal{C}at \) of (small) categories correspond to well-known (cloven) Grothendieck fibrations.
Chevalley fibrations

- Dually one defines Chevalley **opfibrations** as 1-cells \(p : E \to B \) for which the morphism \(\Gamma_0 : E \downarrow \to p/ \to B \) has a left adjoint \(\Lambda_0 \) with identity unit.

- A bifibration is equipped with the structures of both a fibration and an opfibration.

- Gray 1966 showed that Chevalley fibrations in the 2-category \(\mathbf{Cat} \) of (small) categories correspond to well-known (cloven) Grothendieck fibrations.

In the case where p is carrable, the comma objects p/B and B/p can be expressed as pullbacks along the two projections from $B \downarrow \downarrow = B/B$ to B.
Fibrational extensions of contexts

- In the case where \(p \) is carrable, the comma objects \(p/B \) and \(B/p \) can be expressed as pullbacks along the two projections from \(B\downarrow = B/B \) to \(B \).
- Any extension map of contexts \(U: \mathbb{T}_1 \to \mathbb{T}_0 \) in the 2-category \(\text{Con} \) is (strictly) carrable.
Fibrational extensions of contexts

• In the case where \(p \) is carrable, the comma objects \(p/B \) and \(B/p \) can be expressed as pullbacks along the two projections from \(B^\downarrow = B/B \) to \(B \).

• Any extension map of contexts \(U: \mathbb{T}_1 \to \mathbb{T}_0 \) in the 2-category \(\mathcal{C}on \) is (strictly) carrable.

• Using this fact, and since comma objects exists in \(\mathcal{C}on \), we reformulate the notion of Chevalley fibration in \(\mathcal{C}on \).
Fibrational extensions of contexts

- An extension map is called **fibrational** if Γ_1 has a right adjoint with identity counit.
Main theorem

Theorem

If $U : \mathbb{T}_1 \to \mathbb{T}_0$ is a (op)fibrational extension of contexts, and M is any model of \mathbb{T}_0 in an elementary topos S, then $p : S[\mathbb{T}_1/M] \to S$ is an (op)fibration of toposes.
Main theorem

Theorem

If $U : T_1 \to T_0$ is a (op)fibrational extension of contexts, and M is any model of T_0 in an elementary topos S, then $p : S[T_1/M] \to S$ is an (op)fibration of toposes.

Local homeomorphism of toposes as opfibration

• For S a bounded S_0 topos, and $T_0 = \emptyset$ and T_1 the extended context of T_0 with a fresh edge from terminal to the unique node of T_0.
Local homeomorphism of toposes as opfibration

- For S a bounded S_0 topos, and $T_0 = \emptyset$ and T_1 the extended context of T_0 with a fresh edge from terminal to the unique node of T_0.
- We get a context extension map $T_1 \to T_0$, which is an opfibration.
Local homeomorphism of toposes as opfibration

- For S a bounded S_0 topos, and $T_0 = \emptyset$ and T_1 the extended context of T_0 with a fresh edge from terminal to the unique node of T_0.
- We get a context extension map $T_1 \to T_0$, which is an opfibration.
- And a bipullback of toposes

$$
\begin{array}{c}
S/M \simeq S[T_1/M] \\
\downarrow \quad M^*p \\
S \\
\downarrow \\
S_0[\mathcal{X}] \\
\end{array}
\xrightarrow{\quad p \quad}
\begin{array}{c}
S_0[\mathcal{X}, x] = S_0[\mathcal{X}[T_1/\mathcal{X}]] \\
\downarrow \\
S_0[\mathcal{X}] \\
\end{array}
$$

M^*p is a fibration of toposes.
Local homeomorphism of toposes as opfibration

- For S a bounded S_0 topos, and $T_0 = \emptyset$ and T_1 the extended context of T_0 with a fresh edge from terminal to the unique node of T_0.
- We get a context extension map $T_1 \to T_0$, which is an opfibration.
- And a bipullback of toposes

\[
\begin{array}{ccc}
S/M & \xrightarrow{\cong} & S[T_1/M] \\
\downarrow^{M^*p} & & \downarrow^p \\
S & \xrightarrow{M} & S_0[X]
\end{array}
\]

- M^*p is a fibration of toposes.
Spectrum of Boolean algebras

- For \mathcal{S} a bounded \mathcal{S}_0 topos, and $\mathbb{T}_0 =$ context of Boolean algebras and \mathbb{T}_1 the extended context of Boolean algebra with a prime filter
- We get a context extension map $\mathbb{T}_1 \rightarrow \mathbb{T}_0$ which is a fibration.
- And a bipullback of toposes

$$
\begin{array}{ccc}
Spec(B) & \longrightarrow & S[\mathbb{T}_1/B] \\
\downarrow M^*p & & \downarrow p \\
1 & \longrightarrow & S
\end{array}
$$

- The points of $S[\mathbb{T}_1/B]$ are pairs (B, F) where F is an internal prime filter of B in topos S. “every fibrewise Stone bundle is a fibration.”
Other examples

- Internal Algebraic dcpo as opfibrations
- Spectral spaces as fibrations
- SFP domains as bifibrations
- Internal groups equipped with an action as fibrations
- Internal categories equipped with a torsor as opfibrations
- Internal modules as bifibrations
- Bag domains as opfibrations
- ...
Igor Bakovic. “Fibrations in tricategories”. In: 93rd Peripatetic Seminar on Sheaves and Logic, University of Cambridge (2012).

References II

Thank you for your attention!