A topos-theoretic approach to systems and behavior

David I. Spivak* and Patrick Schultz

Mathematics Department
Massachusetts Institute of Technology

Toposes in Como
June 27, 2018
Outline

1 Introduction
 - The National Airspace System
 - Summary: motivation and plan

2 The topos B of behavior types

3 Temporal type theory

4 Application to the NAS

5 Conclusion

An example system

The National Airspace System (NAS)

- Goals of NextGen:
 - Double the number of airplanes in the sky;
 - Remain extremely safe.

1 Traffic Collision Avoidance System.
The National Airspace System (NAS)

- **Goals of NextGen:**
 - Double the number of airplanes in the sky;
 - Remain extremely safe.
- **Safe separation problem:**
 - Planes need to remain at a safe distance.
 - Can’t generally communicate directly.
 - Use radars, pilots, ground control, radios, and TCAS.¹

¹Traffic Collision Avoidance System.
An example system

The National Airspace System (NAS)
- **Goals of NextGen:**
 - Double the number of airplanes in the sky;
 - Remain extremely safe.
- **Safe separation problem:**
 - Planes need to remain at a safe distance.
 - Can’t generally communicate directly.
 - Use radars, pilots, ground control, radios, and TCAS.\(^1\)
- **Systems of systems:**
 - A great variety of interconnected systems.
 - Work in concert to enforce global property: safe separation.

\(^1\) Traffic Collision Avoidance System.
Systems of interacting systems in the NAS
Systems of interacting systems in the NAS
Behaviors as sheaves, “contracts” as predicates

Everything in sight will be assigned a sheaf.
- A sheaf of possible behaviors for each box.
- A sheaf of possible behaviors (signals) for each wire.
- Sheaf morphisms from boxes to their wires.
Behaviors as sheaves, “contracts” as predicates

- Everything in sight will be assigned a sheaf.
 - A sheaf of possible behaviors for each box.
 - A sheaf of possible behaviors (signals) for each wire.
 - Sheaf morphisms from boxes to their wires.

- A plane behavior has an associated altitude behavior, TCAS behavior, etc.
 - Want to write it all logically and prove global property.
 - Ask boxes to satisfy predicates = “contracts” = relations on their wires.
 - If everyone satisfies their contract, system maintains safe separation.
What’s the topos for the National Airspace System?
- This question was a major guide for our work.
- Need to combine many common frameworks into a “big tent”.
 - Differential equations, continuous dynamical systems.
 - Labeled transition systems, discrete dynamical systems.
 - Delays, non-instantaneous rules.
 - Determinism, non-determinism.
NAS use-case as guide

What’s the topos for the National Airspace System?
- This question was a major guide for our work.
- Need to combine many common frameworks into a “big tent”.
 - Differential equations, continuous dynamical systems.
 - Labeled transition systems, discrete dynamical systems.
 - Delays, non-instantaneous rules.
 - Determinism, non-determinism.
- Need a logic in which to prove safety of the combined system.
 - Currently, combination process takes place in engineers’ heads.
 - For NextGen, we may need to do better.
NAS use-case as guide

What’s the topos for the National Airspace System?
- This question was a major guide for our work.
- Need to combine many common frameworks into a “big tent”.
 - Differential equations, continuous dynamical systems.
 - Labeled transition systems, discrete dynamical systems.
 - Delays, non-instantaneous rules.
 - Determinism, non-determinism.
- Need a logic in which to prove safety of the combined system.
 - Currently, combination process takes place in engineers’ heads.
 - For NextGen, we may need to do better.

Relationship to toposes:
- Toposes have an associated internal language and logic.
- Can use formal methods (proof assistants) to prove properties of NAS.
Plan of the talk

1. Define a topos \mathcal{B} of behavior types.

2. Discuss *temporal type theory*, which is sound in \mathcal{B}.

3. Return to our NAS use-case.
Outline

1. Introduction

2. The topos \mathcal{B} of behavior types
 - Choosing a topos
 - An intervallic time-line, \mathbb{IR}
 - \mathcal{B} the topos of behavior types

3. Temporal type theory

4. Application to the NAS

5. Conclusion

What is behavior?

We want to model behavior.

- What behaves in this sense?
What is behavior?

We want to model behavior.

- What behaves in this sense?
 - You, your thoughts, your body, your airplane.
 - The radio, each movie, each fight, each fighter.
 - Any sort of thing that can “happen”.
What is behavior?

We want to model behavior.

- What behaves in this sense?
 - You, your thoughts, your body, your airplane.
 - The radio, each movie, each fight, each fighter.
 - Any sort of thing that can “happen”.

- What is a behavior type?
 - A behavior type is like “airplane behavior” or “pilot behavior”
 - Both are collections of possibilities, indexed by time intervals.
 - I want to conceptualize them as sheaves on time intervals.
What is behavior?

We want to model behavior.

- What behaves in this sense?
 - You, your thoughts, your body, your airplane.
 - The radio, each movie, each fight, each fighter.
 - Any sort of thing that can “happen”.

- What is a behavior type?
 - A behavior type is like “airplane behavior” or “pilot behavior”
 - Both are collections of possibilities, indexed by time intervals.
 - I want to conceptualize them as sheaves on time intervals.

So what should we mean by time?
What is behavior?

We want to model behavior.

- What behaves in this sense?
 - You, your thoughts, your body, your airplane.
 - The radio, each movie, each fight, each fighter.
 - Any sort of thing that can “happen”.

- What is a behavior type?
 - A behavior type is like “airplane behavior” or “pilot behavior”
 - Both are collections of possibilities, indexed by time intervals.
 - I want to conceptualize them as sheaves on time intervals.

So what should we mean by time?

- Only rule: whatever we mean, we should be able to capture:
 - Differential equations, labeled transition systems, delay...
What is behavior?

We want to model behavior.

- What behaves in this sense?
 - You, your thoughts, your body, your airplane.
 - The radio, each movie, each fight, each fighter.
 - Any sort of thing that can “happen”.

- What is a behavior type?
 - A behavior type is like “airplane behavior” or “pilot behavior”
 - Both are collections of possibilities, indexed by time intervals.
 - I want to conceptualize them as sheaves on time intervals.

So what should we mean by time?

- Only rule: whatever we mean, we should be able to capture:
 - Differential equations, labeled transition systems, delay...
 - ...compositionally: prove properties of combined systems.
First guess: \(\mathbb{R} \) as timeline

\(\mathbb{R} \) as timeline: Does it serve as a good site for behaviors?
First guess: \mathbb{R} as timeline

\mathbb{R} as timeline: Does it serve as a good site for behaviors?
- What would a behavior type $B \in \text{Shv}(\mathbb{R})$ be?
 - On objects:
 - For each open interval $(a, b) \subseteq \mathbb{R}$, a set $B(a, b)$.
 - “The set of B-behaviors that can occur on (a, b).”
First guess: \(\mathbb{R} \) as timeline

\(\mathbb{R} \) as timeline: Does it serve as a good site for behaviors?

- What would a behavior type \(B \in \text{Shv}(\mathbb{R}) \) be?
 - On objects:
 - For each open interval \((a, b) \subseteq \mathbb{R}\), a set \(B(a, b) \).
 - “The set of \(B \)-behaviors that can occur on \((a, b)\).”
 - On morphisms:
 - For each \(a \leq a' < b' \leq b \), a function \(B(a, b) \to B(a', b') \)
 - “The \(B \)-way to restrict \(B \)-behaviors over subintervals.”
First guess: \(\mathbb{R} \) as timeline

\(\mathbb{R} \) as timeline: Does it serve as a good site for behaviors?

- What would a behavior type \(B \in \text{Shv}(\mathbb{R}) \) be?
 - On objects:
 - For each open interval \((a, b) \subseteq \mathbb{R}\), a set \(B(a, b)\).
 - “The set of \(B\)-behaviors that can occur on \((a, b)\).”
 - On morphisms:
 - For each \(a \leq a' < b' \leq b\), a function \(B(a, b) \to B(a', b')\).
 - “The \(B\)-way to restrict \(B\)-behaviors over subintervals.”
 - Gluing conditions:
 - “Continuity”: \(B(a, b) = \lim_{a < a' < b' < b} B(a', b')\).
First guess: \(\mathbb{R} \) as timeline

\(\mathbb{R} \) as timeline: Does it serve as a good site for behaviors?

- What would a behavior type \(B \in \text{Shv}(\mathbb{R}) \) be?
 - On objects:
 - For each open interval \((a, b) \subseteq \mathbb{R}\), a set \(B(a, b) \).
 - “The set of \(B \)-behaviors that can occur on \((a, b)\).”
 - On morphisms:
 - For each \(a \leq a' < b' \leq b \), a function \(B(a, b) \rightarrow B(a', b') \).
 - “The \(B \)-way to restrict \(B \)-behaviors over subintervals.”
 - Gluing conditions:
 - “Continuity”: \(B(a, b) = \lim_{a < a' < b' < b} B(a', b') \).
 - “Composition”: \(B(a, b) = B(a, b') \times_{B(a', b')} B(a', b) \).
First guess: \mathbb{R} as timeline

\mathbb{R} as timeline: Does it serve as a good site for behaviors?

- What would a behavior type $B \in \text{Shv}(\mathbb{R})$ be?
 - On objects:
 - For each open interval $(a, b) \subseteq \mathbb{R}$, a set $B(a, b)$.
 - “The set of B-behaviors that can occur on (a, b).”
 - On morphisms:
 - For each $a \leq a' < b' \leq b$, a function $B(a, b) \to B(a', b')$
 - “The B-way to restrict B-behaviors over subintervals.”
 - Gluing conditions:
 - “Continuity”: $B(a, b) = \lim_{a < a' < b' < b} B(a', b')$.
 - “Composition”: $B(a, b) = B(a, b') \times_{B(a', b')} B(a', b)$.

![Graph](attachment:image.png)
First guess: \(\mathbb{R} \) as timeline

\(\mathbb{R} \) as timeline: Does it serve as a good site for behaviors?

- What would a behavior type \(B \in \text{Shv}(\mathbb{R}) \) be?
 - On objects:
 - For each open interval \((a, b) \subseteq \mathbb{R} \), a set \(B(a, b) \).
 - “The set of \(B \)-behaviors that can occur on \((a, b) \).”
 - On morphisms:
 - For each \(a \leq a' < b' \leq b \), a function \(B(a, b) \to B(a', b') \).
 - “The \(B \)-way to restrict \(B \)-behaviors over subintervals.”
 - Gluing conditions:
 - “Continuity”: \(B(a, b) = \lim_{a < a' < b' < b} B(a', b') \).
 - “Composition”: \(B(a, b) = B(a, b') \times_{B(a', b')} B(a', b) \).

\[a \quad a' \quad b' \quad b \]
First guess: \mathbb{R} as timeline

\mathbb{R} as timeline: Does it serve as a good site for behaviors?

- What would a behavior type $B \in \text{Shv}(\mathbb{R})$ be?
 - On objects:
 - For each open interval $(a, b) \subseteq \mathbb{R}$, a set $B(a, b)$.
 - “The set of B-behaviors that can occur on (a, b).”
 - On morphisms:
 - For each $a \leq a' < b' \leq b$, a function $B(a, b) \to B(a', b')$
 - “The B-way to restrict B-behaviors over subintervals.”

- Gluing conditions:
 - “Continuity”: $B(a, b) = \lim_{a < a' < b' < b} B(a', b')$.
 - “Composition”: $B(a, b) = B(a, b') \times_{B(a', b')} B(a', b)$.

\[a \quad a' \quad b' \quad b \]
Why \(\mathbb{R} \) is not preferable as the site

Two reasons *not to use* \(\text{Shv}(\mathbb{R}) \) as our topos.

1. Often want to consider **non-composable** behaviors!
 - “Roughly monotonic”: \(\forall (t_1, t_2). \ t_1 + 5 \leq t_2 \implies f(t_1) \leq f(t_2) \).
 - “Don’t move much”: \(\forall (t_1, t_2). \ -5 < f(t_1) - f(t_2) < 5 \).
 - Neither of these have the “composition gluing”.

2. Want to compare behavior across different time windows.
 - Example: a delay is “the same behavior at different times.”
 - \(\text{Shv}(\mathbb{R}) \) sees no relationship between \(B(0, 3) \) and \(B(2, 5) \).
 - Want “Translation invariance.”
 - Solution: Replace \(\mathbb{R} \) with an intervallic timeline.
 - Quotient by translation action.
Why \mathbb{R} is not preferable as the site

Two reasons *not to use* $\text{Shv}(\mathbb{R})$ as our topos.

1. Often want to consider **non-composable** behaviors!
 - “Roughly monotonic”: $\forall (t_1, t_2). \ t_1 + 5 \leq t_2 \Rightarrow f(t_1) \leq f(t_2)$.
 - “Don’t move much”: $\forall (t_1, t_2). \ -5 < f(t_1) - f(t_2) < 5$.
 - Neither of these have the “composition gluing”.

2. Want to compare behavior across different time windows.
 - Example: a delay is “the same behavior at different times.”
 - $\text{Shv}(\mathbb{R})$ sees no relationship between $B(0, 3)$ and $B(2, 5)$.
Why \(\mathbb{R} \) is not preferable as the site

Two reasons *not to use* \(\text{Shv}(\mathbb{R}) \) as our topos.

1. Often want to consider non-composable behaviors!
 - “Roughly monotonic”: \(\forall (t_1, t_2). t_1 + 5 \leq t_2 \Rightarrow f(t_1) \leq f(t_2) \).
 - “Don’t move much”: \(\forall (t_1, t_2). -5 < f(t_1) - f(t_2) < 5 \).
 - Neither of these have the “composition gluing”.

2. Want to compare behavior across different time windows.
 - Example: a delay is “the same behavior at different times.”
 - \(\text{Shv}(\mathbb{R}) \) sees no relationship between \(B(0, 3) \) and \(B(2, 5) \).
 - Want “Translation invariance.”
Why \mathbb{R} is not preferable as the site

Two reasons *not to use* $\text{Shv}(\mathbb{R})$ as our topos.

1. Often want to consider **non-composable** behaviors!
 - “Roughly monotonic”: $\forall (t_1, t_2). \ t_1 + 5 \leq t_2 \Rightarrow f(t_1) \leq f(t_2)$.
 - “Don’t move much”: $\forall (t_1, t_2). \ -5 < f(t_1) - f(t_2) < 5$.
 - Neither of these have the “composition gluing”.

2. Want to compare behavior across different time windows.
 - Example: a delay is “the same behavior at different times.”
 - $\text{Shv}(\mathbb{R})$ sees no relationship between $B(0, 3)$ and $B(2, 5)$.
 - Want “Translation invariance.”

Solution:

- Replace \mathbb{R} with an intervallic timeline.
- Quotient by translation action.
An intervallic time-line, \mathbb{IR}

For our timeline we use \mathbb{IR} “the domain of real intervals”.
An intervallic time-line, \mathbb{IR}

For our timeline we use \mathbb{IR} “the domain of real intervals”.

- **Definition** $\mathbb{IR} = \text{tw}(\mathbb{R}, \leq)^{\text{op}}$.
 - Points: $\{[a, b] \mid a \leq b \in \mathbb{R}\}$.
 - $[a, b] \subseteq [a', b']$ iff $a \leq a' \leq b' \leq b$.
 - $[a, b]$ is *less precise* than $[a', b']$.
 - $\mathbb{R} \subseteq \mathbb{IR}$ embeds as the maximal points, $[r, r]$.
An intervallic time-line, \mathbb{IR}

For our timeline we use \mathbb{IR} “the domain of real intervals”.

- Definition $\mathbb{IR} = \text{tw}(\mathbb{R}, \leq)^{\text{op}}$.
 - Points: $\{[a, b] \mid a \leq b \in \mathbb{R}\}$.
 - $[a, b] \subseteq [a’, b’]$ iff $a \leq a’ \leq b’ \leq b$.
 - $[a, b]$ is less precise than $[a’, b’]$.
 - $\mathbb{R} \subseteq \mathbb{IR}$ embeds as the maximal points, $[r, r]$.

- \mathbb{IR} is a Scott domain:
 - Its poset of points determines a topology. How?
An intervallic time-line, \mathbb{IR}

For our timeline we use \mathbb{IR} “the domain of real intervals”.

- **Definition** $\mathbb{IR} = \text{tw}(\mathbb{R}, \leq)^{\text{op}}$.
 - Points: $\{[a, b] \mid a \leq b \in \mathbb{R}\}$.
 - $[a, b] \subseteq [a', b']$ iff $a \leq a' \leq b' \leq b$.
 - $[a, b]$ is less precise than $[a', b']$.
 - $\mathbb{R} \subseteq \mathbb{IR}$ embeds as the maximal points, $[r, r]$.

- \mathbb{IR} is a Scott domain:
 - Its poset of points determines a topology. How?
 - There’s are adjunctions $\mathbb{IR} \xleftarrow{\text{colim}} \xrightarrow{\text{Idl}(\mathbb{IR})} $.
 - $[a, b] \in \downarrow[a', b']$ iff $a < a' \leq b' < b$ (strict inequalities).
 - Scott topology: take as basis of opens $\{\uparrow[a, b] \mid a \leq b\}$.
An intervallic time-line, \mathbb{IR}

For our timeline we use \mathbb{IR} “the domain of real intervals”.

- Definition $\mathbb{IR} = \text{tw}(\mathbb{R}, \leq)^{\text{op}}$.
 - Points: $\{[a, b] \mid a \leq b \in \mathbb{R}\}$.
 - $[a, b] \subseteq [a’, b’]$ iff $a \leq a’ \leq b’ \leq b$.
 - $[a, b]$ is less precise than $[a’, b’]$.
 - $\mathbb{R} \subseteq \mathbb{IR}$ embeds as the maximal points, $[r, r]$.

- \mathbb{IR} is a Scott domain:
 - Its poset of points determines a topology. How?

 There’s are adjunctions $\mathbb{IR} \xleftarrow{\text{colim}} \xrightarrow{\text{ldl}} \text{ldl}(\mathbb{IR})$.

 - $[a, b] \in \downarrow[a’, b’]$ iff $a < a’ \leq b’ < b$ (strict inequalities).
 - Scott topology: take as basis of opens $\{\uparrow[a, b] \mid a \leq b\}$.

This is our timeline: points are intervals.
Upper half-plane picture of \mathbb{R}

Topologically, we can represent \mathbb{R} in the real upper half-plane.
Upper half-plane picture of \mathbb{IR}

Topologically, we can represent \mathbb{IR} in the real upper half-plane.

Here is $\uparrow[a, b]$:
Upper half-plane picture of \(\mathbb{IR} \)

Topologically, we can represent \(\mathbb{IR} \) in the real upper half-plane.

- Here is \(\uparrow[a, b] \):

- Open sets \(U \in \text{Op}(\mathbb{IR}) \) are arbitrary unions of these.
- They have a nice characterization in terms of Lipschitz functions.
The topos \mathcal{B} of behavior types

An intervallic time-line, \mathbb{IR}

Upper half-plane picture of \mathbb{IR}

Topologically, we can represent \mathbb{IR} in the real upper half-plane.

- Here is $\uparrow[a, b]$:

![Diagram showing the upper half-plane picture of \mathbb{IR}]

- Open sets $U \in \text{Op}(\mathbb{IR})$ are arbitrary unions of these.
- They have a nice characterization in terms of Lipschitz functions.
 - $\{U_f \in \text{Op}(\mathbb{IR})\} \cong \{f : \mathbb{R} \to \mathbb{R}_+ \mid f \text{ is 1-Lipschitz}\}$.
 - Points under curve f correspond to intervals (i.e. points) in U_f.

- These open sets will eventually be the truth-values in our topos.
Shv(IR): behaviors in the context of time

Each $X \in \text{Shv}(IR)$ is a behavior type occurring \textit{in the context of time}.

- IR is our (intervallic) time-line.
- $X[a, b]$ is the set of X-behaviors over the interval $[a, b]$.
- We can restrict behaviors to subintervals $a \leq a' \leq b' \leq b$.
Shv(\(IR\)): behaviors in the context of time

Each \(X \in \text{Shv}(IR)\) is a behavior type occurring in the context of time.
- \(IR\) is our (intervallic) time-line.
- \(X[a, b]\) is the set of \(X\)-behaviors over the interval \([a, b]\).
- We can restrict behaviors to subintervals \(a \leq a' \leq b' \leq b\).

The truth-values in the topos \(\text{Shv}(IR)\) are Scott-open sets.
- The area under a 1-Lipschitz function is a Scott open.
- Truth of any proposition (e.g. “roughly monotonic”) is such an open.
 - Not “is its behavior roughly monotonic”?
Shv(\(\mathbb{IR}\)): behaviors in the context of time

Each \(X \in \text{Shv} (\mathbb{IR})\) is a behavior type occurring \textit{in the context of time.}

- \(\mathbb{IR}\) is our (intervallic) time-line.
- \(X[a, b]\) is the set of \(X\)-behaviors over the interval \([a, b]\).
- We can restrict behaviors to subintervals \(a \leq a' \leq b' \leq b\).

The truth-values in the topos \(\text{Shv} (\mathbb{IR})\) are Scott-open sets.

- The area under a 1-Lipschitz function is a Scott open.
- Truth of any proposition (e.g. “roughly monotonic”) is such an open.
 - Not “is its behavior roughly monotonic”?
 - But instead “over what intervals is it roughly monotonic”?

\(\text{Shv} (\mathbb{IR})\) is the topos of behavior types in the context of time.
Shv(\(\mathbb{IR}\)): behaviors in the context of time

Each \(X \in \text{Shv}(\mathbb{IR})\) is a behavior type occurring \textit{in the context of time}.

- \(\mathbb{IR}\) is our (intervallic) time-line.
- \(X[a, b]\) is the set of \(X\)-behaviors over the interval \([a, b]\).
- We can restrict behaviors to subintervals \(a \leq a' \leq b' \leq b\).

The truth-values in the topos \(\text{Shv}(\mathbb{IR})\) are Scott-open sets.

- The area under a 1-Lipschitz function is a Scott open.
- Truth of any proposition (e.g. “roughly monotonic”) is such an open.
 - Not “is its behavior roughly monotonic”?
 - But instead “over what intervals is it roughly monotonic”?

\(\text{Shv}(\mathbb{IR})\) is the topos of behavior types in the context of time.

Next up: keep durations, remove fixed timeline.
Translation-invariant quotient topos \mathcal{B}

We want translation-invariance to compare behaviors over different times.
Translation-invariant quotient topos \(\mathcal{B} \)

We want translation-invariance to compare behaviors over different times.

- Translation action \(\mathbb{R} \xrightarrow{\oplus} \text{Aut}(\mathbb{R}) \), \(r \triangleright [a, b] := [a + r, b + r] \)
Translation-invariant quotient topos \(\mathcal{B} \)

We want translation-invariance to compare behaviors over different times.

- Translation action \(\mathbb{R} \xrightarrow{\triangleright} \text{Aut}(\mathbb{R}), \quad r \triangleright [a, b] := [a + r, b + r] \)
- This induces a *left-exact comonad* \(T \) on \(\text{Shv}(\mathbb{R}) \).
 - (Left-exact comonads are what define geometric surjections.)
 - For \(X \in \text{Shv}(\mathbb{R}) \), define \(TX \in \text{Shv}(\mathbb{R}) \) by
 \[
 (TX)[a, b] := \prod_{r \in \mathbb{R}} X[a + r, b + r].
 \]
Translation-invariant quotient topos \mathcal{B}

We want translation-invariance to compare behaviors over different times.

- Translation action $\mathbb{R} \xrightarrow{\rightharpoonup} \text{Aut}(\mathbb{IR})$, $r \rightharpoonup [a, b] := [a + r, b + r]$.
- This induces a left-exact comonad T on $\text{Shv}(\mathbb{IR})$.
 - (Left-exact comonads are what define geometric surjections.)
 - For $X \in \text{Shv}(\mathbb{IR})$, define $TX \in \text{Shv}(\mathbb{IR})$ by
 \[(TX)[a, b] := \prod_{r \in \mathbb{R}} X[a + r, b + r].\]
- T-coalgebras are translation-equivariant sheaves.
- Define topos $\mathcal{B} := T\text{-coAlg}$ of “behavior types”.
- In fact \mathcal{B} is an étendue.
Translation-invariant quotient topos \mathcal{B}

We want translation-invariance to compare behaviors over different times.

- Translation action $\mathbb{R} \rightarrow \text{Aut}(\mathbb{IR})$, $r \triangleright [a, b] := [a + r, b + r]$
- This induces a *left-exact comonad* T on $\text{Shv}(\mathbb{IR})$.
 - (Left-exact comonads are what define geometric surjections.)
 - For $X \in \text{Shv}(\mathbb{IR})$, define $TX \in \text{Shv}(\mathbb{IR})$ by
 $$(TX)[a, b] := \prod_{r \in \mathbb{R}} X[a + r, b + r].$$
- T-coalgebras are translation-equivariant sheaves.
- Define topos $\mathcal{B} := T\text{-coAlg}$ of “behavior types”.
- In fact \mathcal{B} is an étendue.
 - There is an inhabited object, which we call $\text{Time} \in \mathcal{B}$,
 - And an equivalence $\text{Shv}(\mathbb{IR}) \cong \mathcal{B}/\text{Time}$.
 - Makes precise “$\text{Shv}(\mathbb{IR})$ is behavior types in the context of time.”
Translation-invariant quotient topos \mathcal{B}

We want translation-invariance to compare behaviors over different times.

- Translation action $\mathbb{R} \to \text{Aut}(\mathbb{IR})$, $r \triangleright [a, b] := [a + r, b + r]$
- This induces a *left-exact comonad* T on $\text{Shv}(\mathbb{IR})$.
 - (Left-exact comonads are what define geometric surjections.)
 - For $X \in \text{Shv}(\mathbb{IR})$, define $TX \in \text{Shv}(\mathbb{IR})$ by
 $$(TX)[a, b] := \prod_{r \in \mathbb{R}} X[a + r, b + r].$$

- T-coalgebras are translation-equivariant sheaves.
- Define topos $\mathcal{B} := T$-coAlg of “behavior types”.
- In fact \mathcal{B} is an étendue.
 - There is an inhabited object, which we call $\text{Time} \in \mathcal{B}$,
 - And an equivalence $\text{Shv}(\mathbb{IR}) \cong \mathcal{B}/\text{Time}$.
 - Makes precise “$\text{Shv}(\mathbb{IR})$ is behavior types in the context of time.”

Next we’ll give a site presentation of this topos \mathcal{B}.
A site for \mathcal{B}

Consider the twisted-arrow category $\mathbb{I}\mathbb{R}/\triangleright = \text{tw}(\mathbb{R}_{\geq 0})$.

- **Objects** = $\{\ell \in \mathbb{R}_{\geq 0}\}$.
- **Hom(ℓ', ℓ)** = $\{\langle r, s \rangle \mid r + \ell' + s = \ell\}^2$

$\mathbb{I}\mathbb{R}/\triangleright$ is a continuous category in the sense of Johnstone-Joyal.

Coverage $\{\langle r, s \rangle : \ell' \rightarrow \ell \mid r > 0, s > 0\}$.

When $r, s > 0$, write $\ell' \dashv\rightarrow \ell$.

The topos of behavior types: $\mathcal{B} = \text{Shv}(\mathbb{I}\mathbb{R}/\triangleright)$.

A sheaf X assigns a set of possible behaviors to each ℓ and a restriction map to each included subinterval $\langle r, s \rangle : \ell' \rightarrow \ell$ such that $X(\ell)$ limits $\ell' \dashv\rightarrow \ell$.

Étendue means “extent”; $\mathbb{I}\mathbb{R}/\triangleright$ is indeed extents (durations) of time.

Lawvere also studied sheaves on $\mathbb{I}\mathbb{R}/\triangleright$, but used “composition gluing” whereas we use “continuity gluing.”
A site for \mathcal{B}

Consider the twisted-arrow category $\mathbb{IR}/\triangleright = \text{tw}(\mathbb{R}_{\geq 0})$.

- Objects $= \{ \ell \in \mathbb{R}_{\geq 0} \}$.
- $\text{Hom}(\ell', \ell) = \{ \langle r, s \rangle \mid r + \ell' + s = \ell \}$

$\mathbb{IR}/\triangleright$ is a continuous category in the sense of Johnstone-Joyal.

- Coverage $\{ \langle r, s \rangle : \ell' \to \ell \mid r > 0, s > 0 \}$.
- When $r, s > 0$, write $\ell' \rightsquigarrow \ell$.

The topos of behavior types: $\mathcal{B} \cong \text{Shv}(\mathbb{IR}/\triangleright)$

2Lawvere also studied sheaves on $\mathbb{IR}/\triangleright$, but used “composition gluing” whereas we use “continuity gluing.”
A site for \mathcal{B}

Consider the twisted-arrow category $\mathbb{IR}/\triangleright = \text{tw}(\mathbb{R}_{\geq 0})$.

- Objects $= \{\ell \in \mathbb{R}_{\geq 0}\}$.
- $\text{Hom}(\ell', \ell) = \{\langle r, s \rangle \mid r + \ell' + s = \ell\}^2$

$\mathbb{IR}/\triangleright$ is a continuous category in the sense of Johnstone-Joyal.

- Coverage $\{\langle r, s \rangle \colon \ell' \to \ell \mid r > 0, s > 0\}$.
- When $r, s > 0$, write $\ell' \leadsto \ell$.

The topos of behavior types: $\mathcal{B} \cong \text{Shv}(\mathbb{IR}/\triangleright)$

- A sheaf X assigns a set of possible behaviors to each ℓ,
- And a restriction map to each included subinterval $\langle r, s \rangle \colon \ell' \to \ell$,
- Such that $X(\ell) \cong \lim_{\ell' \leadsto \ell} X(\ell')$.

2Lawvere also studied sheaves on $\mathbb{IR}/\triangleright$, but used “composition gluing” whereas we use “continuity gluing.”
A site for \mathcal{B}

Consider the twisted-arrow category $\mathbb{IR}/\triangleright = \text{tw}(\mathbb{R}_{\geq 0})$.

- Objects $= \{\ell \in \mathbb{R}_{\geq 0}\}$.
- $\text{Hom}(\ell', \ell) = \{\langle r, s \rangle \mid r + \ell' + s = \ell\}$

$\mathbb{IR}/\triangleright$ is a continuous category in the sense of Johnstone-Joyal.

- Coverage $\{\langle r, s \rangle \colon \ell' \to \ell \mid r > 0, s > 0\}$.
- When $r, s > 0$, write $\ell' \rightsquigarrow \ell$.

The topos of behavior types: $\mathcal{B} \cong \text{Shv}(\mathbb{IR}/\triangleright)$

- A sheaf X assigns a set of possible behaviors to each ℓ,
- And a restriction map to each included subinterval $\langle r, s \rangle \colon \ell' \to \ell$,
- Such that $X(\ell) \cong \lim_{\ell' \rightsquigarrow \ell} X(\ell')$.

Étendue means “extent”; $\mathbb{IR}/\triangleright$ is indeed extents (durations) of time.

\(^2\)Lawvere also studied sheaves on $\mathbb{IR}/\triangleright$, but used “composition gluing” whereas we use “continuity gluing.”
Example behavior types $X \in \mathcal{B}$

We contend that any sort of behavior can be modeled as an object $X \in \mathcal{B}$.
Example behavior types $X \in \mathcal{B}$

We contend that any sort of behavior can be modeled as an object $X \in \mathcal{B}$.

- Trajectories through a vector field,
- Delays (+ delay differential equations),
- Stochastic walk through a graph,
- Ω: subobject classifier is “1-Lipschitz functions”.

\begin{itemize}
 \item \includegraphics[width=\textwidth]{vector_field}
 \item \includegraphics[width=\textwidth]{graph_diagram}
\end{itemize}
Example behavior types $X \in \mathcal{B}$

We contend that any sort of behavior can be modeled as an object $X \in \mathcal{B}$.

- Trajectories through a vector field,
- Delays (+ delay differential equations),
- Stochastic walk through a graph,
- Ω: subobject classifier is “1-Lipschitz functions”.

Next up: want logic to define other interesting behaviors.
Logical expressions give amazingly convenient representations.

- “Whenever I touch blue, I’ll spend 1 full sec. on blue within 5 sec’s.”
- $\forall (t : \text{Time}). \bigwedge_{[0,0]}^t B(x) \Rightarrow \exists (r : \mathbb{R}). 0 \leq r \leq 5 \land \bigwedge_{[r,r+1]}^t B(x)$.

Kripke-Joyal semantics

Logical expressions like the above can be interpreted in the topos \mathcal{B}. E.g. the above defines a map $P : X \rightarrow \Omega$, given $B : X \rightarrow \Omega$. This in turn gives a subtype $\{ X | P \}$ of "P-good behavior".

How is internal logic convenient?

- compact notation,
- precise semantics,
- quite expressive,
- readable in natural language, e.g. English.
Preview of higher-order temporal logic for behavior

Logical expressions give amazingly convenient representations.

- “Whenever I touch blue, I’ll spend 1 full sec. on blue within 5 sec’s.”
- $\forall (t : \text{Time}). \exists (r : \mathbb{R}). 0 \leq r \leq 5 \land \forall_{[t,t+1]} B(x)$.

Kripke-Joyal semantics

- Logical expressions like the above can be interpreted in the topos \mathcal{B}.
- E.g. the above defines a map $P : X \rightarrow \Omega$, given $B : X \rightarrow \Omega$.
- This in turn gives a subtype $\{ X \mid P \}$ of “P-good behavior”.
Preview of higher-order temporal logic for behavior

Logical expressions give amazingly convenient representations.
- “Whenever I touch blue, I’ll spend 1 full sec. on blue within 5 sec’s.”
- $\forall (t : \text{Time}). \exists (r : \mathbb{R}). 0 \leq r \leq 5 \land \forall_{[r, r+1]} B(x)$.

Kripke-Joyal semantics
- Logical expressions like the above can be interpreted in the topos \mathcal{B}.
- E.g. the above defines a map $P : X \to \Omega$, given $B : X \to \Omega$.
- This in turn gives a subtype $\{X | P\}$ of “P-good behavior”.

How is internal logic is convenient?
- compact notation,
- precise semantics,
- quite expressive,
- readable in natural language, e.g. English.
Outline

1. Introduction

2. The topos \mathcal{B} of behavior types

3. Temporal type theory
 - Toposes, type theory, and logic
 - A finitely-presented language with semantics in \mathcal{B}
 - Local reals and derivatives

4. Application to the NAS

5. Conclusion

Internal language of a topos

The internal language—previewed above—does a lot of heavy lifting.

3Étendues are “locally locales”, so we can use locale terminology, like “open subset”.

Internal language of a topos

The internal language—previewed above—does a lot of heavy lifting.

- Here is *Kripke-Joyal semantics* for a sheaf topos.

<table>
<thead>
<tr>
<th>Logical expr.</th>
<th>Sheaf-theoretic translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall (x : X). P(x)$</td>
<td>For all open U, and all $x \in X(U)$, $P\big</td>
</tr>
<tr>
<td>$\exists (x : X). P(x)$</td>
<td>There is an open cover $(U_i)_{i \in I}$ and a section $x \in X(U_i)$ in each, s.t. $P\big</td>
</tr>
<tr>
<td>$P \Rightarrow Q$</td>
<td>For all open U, if $P\big</td>
</tr>
<tr>
<td>$P \lor Q$</td>
<td>There is an open cover $(U_i)_{i \in I}$, s.t. $P\big</td>
</tr>
<tr>
<td>etc.</td>
<td>etc.</td>
</tr>
</tbody>
</table>

3 Étendues are “locally locales”, so we can use locale terminology, like “open subset”.
Internal language of a topos

The internal language—previewed above—does a lot of heavy lifting.

- Here is *Kripke-Joyal semantics* for a sheaf topos.

<table>
<thead>
<tr>
<th>Logical expr.</th>
<th>Sheaf-theoretic translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall (x : X). P(x)$</td>
<td>For all open U, and all $x \in X(U)$, $P</td>
</tr>
<tr>
<td>$\exists (x : X). P(x)$</td>
<td>There is an open cover $(U_i)_{i \in I}$ and a section $x \in X(U_i)$ in each, s.t. $P</td>
</tr>
<tr>
<td>$P \Rightarrow Q$</td>
<td>For all open U, if $P</td>
</tr>
<tr>
<td>$P \lor Q$</td>
<td>There is an open cover $(U_i)_{i \in I}$, s.t. $P</td>
</tr>
<tr>
<td>etc.</td>
<td>etc.</td>
</tr>
</tbody>
</table>

(In \mathcal{B}, all covers are filtered, so \lor degenerates: no need for cover.)

3Étendues are “locally locales”, so we can use locale terminology, like “open subset”.
Example: Dedekind numeric objects

In any sheaf topos, use logic to define various Dedekind numeric objects.
Example: Dedekind numeric objects

In any sheaf topos, use logic to define various *Dedekind numeric objects*.

- Start with \mathbb{Q}; its semantics is the constant sheaf \mathbb{Q}.
- Consider functions $\delta : \mathbb{Q} \to \Omega$ (“the lower bounds” for some real).
- We can define the *lower reals* internally:

$$\mathbb{R} := \{ \delta : \mathbb{Q} \to \Omega \mid \exists q. \delta q \land \forall q. \delta q \iff \exists q'. q < q' \land \delta q' \}.$$
Example: Dedekind numeric objects

In any sheaf topos, use logic to define various *Dedekind numeric objects*.

- Start with \mathbb{Q}; its semantics is the constant sheaf \mathbb{Q}.
- Consider functions $\delta : \mathbb{Q} \to \Omega$ ("the lower bounds" for some real).
- We can define the *lower reals* internally:

 $$\mathbb{R} := \{ \delta : \mathbb{Q} \to \Omega \mid \exists q. \delta q \land \forall q. \delta q \iff \exists q'. q < q' \land \delta q' \}.$$

 - The semantics are nice on localic toposes. If X is a top. sp., $\llbracket \mathbb{R} \rrbracket (U) = \{ \text{lower semi-continuous functions } U \to \mathbb{R} \}$.

 - Dually, define $\bar{\mathbb{R}}$, with $\llbracket \bar{\mathbb{R}} \rrbracket (U) = \{ \text{upper semi-continuous} \ldots \}$.
Example: Dedekind numeric objects

In any sheaf topos, use logic to define various *Dedekind numeric objects*.

- Start with \mathbb{Q}; its semantics is the constant sheaf \mathbb{Q}.
- Consider functions $\delta : \mathbb{Q} \to \Omega$ (“the lower bounds” for some real).
- We can define the *lower reals* internally:

\[
\bar{\mathbb{R}} := \{ \delta : \mathbb{Q} \to \Omega \mid \exists q. \delta q \land \forall q. \delta q \iff \exists q'. \, q < q' \land \delta q' \}.
\]

- The semantics are nice on localic toposes. If X is a top. sp.,
 \[\llbracket \bar{\mathbb{R}} \rrbracket(U) = \{ \text{lower semi-continuous functions} \, U \to \mathbb{R} \} \].
- Dually, define $\bar{\bar{\mathbb{R}}}$, with $\llbracket \bar{\bar{\mathbb{R}}} \rrbracket(U) = \{ \text{upper semi-continuous} \ldots \}$
- $\bar{\bar{\mathbb{R}}} := \bar{\mathbb{R}} \times \bar{\mathbb{R}}$: *extended intervals*.
- $\mathbb{R} := \{(\delta, \nu) : \bar{\bar{\mathbb{R}}} \mid \forall q. \neg(\delta q \land \nu q) \land \forall(q < q'). \delta q \lor \nu q' \}$.

We refer to all of these as *Dedekind numeric objects*.
Example: Dedekind numeric objects

In any sheaf topos, use logic to define various Dedekind numeric objects.

- Start with \mathbb{Q}; its semantics is the constant sheaf \mathbb{Q}.
- Consider functions $\delta : \mathbb{Q} \to \Omega$ (“the lower bounds” for some real).
- We can define the lower reals internally:

$$\mathbb{R} := \{ \delta : \mathbb{Q} \to \Omega \mid \exists q. \delta q \land \forall q. \delta q \iff \exists q'. q < q' \land \delta q' \}.$$

- The semantics are nice on localic toposes. If X is a top. sp.,
- $\llbracket \mathbb{R} \rrbracket (U) = \{ \text{lower semi-continuous functions } U \to \mathbb{R} \}$.

- Dually, define $\bar{\mathbb{R}}$, with $\llbracket \bar{\mathbb{R}} \rrbracket (U) = \{ \text{upper semi-continuous . . . } \}$
- $\bar{\mathbb{R}} := \mathbb{R} \times \bar{\mathbb{R}}$: extended intervals.
- $\mathbb{R} := \{ (\delta, \nu) : \bar{\mathbb{R}} \mid \forall q. \neg(\delta q \land \nu q) \land \forall (q < q'). \delta q \lor \nu q' \}$.

We refer to all of these as Dedekind numeric objects.
What is temporal type theory?

Temporal type theory: a finitely presented sublanguage of \mathcal{B}’s language.

- The internal language of \mathcal{B} is infinite:
 - It consists of every object (as type), morphism (as term),
 - every commutative diagram, finite limit, exp’l object, etc. in \mathcal{B}.
Temporal type theory: a finitely presented sublanguage of \mathcal{B}’s language.

- The internal language of \mathcal{B} is infinite:
 - It consists of every object (as type), morphism (as term),
 - every commutative diagram, finite limit, exp’l object, etc. in \mathcal{B}.

- What if we want non-topos-theorists to use this formal system?
 - NASA uses formal methods to prove properties of systems.
 - These are formulas and proofs written in (temporal) logic.
 - We want same, but with richer type system, better semantics.
Temporal type theory: a finitely presented sublanguage of \mathcal{B}’s language.

- The internal language of \mathcal{B} is infinite:
 - It consists of every object (as type), morphism (as term),
 - every commutative diagram, finite limit, exp’l object, etc. in \mathcal{B}.

- What if we want non-topos-theorists to use this formal system?
 - NASA uses *formal methods* to prove properties of systems.
 - These are formulas and proofs written in (temporal) logic.
 - We want same, but with richer type system, better semantics.

- We present a finite sub-language; build what we need from within. This finite sublanguage is what we call *temporal type theory*.
Temporal type theory

The finitely presented language has:

- One atomic predicate symbol, \(\text{unit_speed}: \mathbb{R} \to \Omega \).
The finitely presented language has:

- One atomic predicate symbol, \(\text{unit_speed} : \mathbb{R} \rightarrow \Omega \).

- From here, define \(\text{Time} := \{ x : \mathbb{R} \mid \text{unit_speed}(x) \} \).

- Idea: internalize the set of time-lines (clock behaviors).
 - What is a clock behavior (on an external interval)?
 - It is an internal interval, moving along at unit speed.
Temporal type theory

The finitely presented language has:
- One atomic predicate symbol, \(\text{unit_speed} : \mathbb{R} \rightarrow \Omega \).
- From here, define \(\text{Time} := \{ x : \mathbb{R} | \text{unit_speed}(x) \} \).
- Idea: internalize the set of time-lines (clock behaviors).
- What is a clock behavior (on an external interval)?
 - It is an internal interval, moving along at unit speed.
- The theory has ten axioms, e.g. that \(\text{Time} \) is an \(\mathbb{R} \)-torsor:
 - \(\forall (t : \text{Time})(r : \mathbb{R}). t + r \in \text{Time} \),
 - \(\forall (t_1, t_2 : \text{Time}). \exists! (r : \mathbb{R}). t_1 + r = t_2 \).
Temporal type theory

The finitely presented language has:
- One atomic predicate symbol, \(\text{unit_speed} : \mathbb{R} \to \Omega \).
 - From here, define \(\text{Time} := \{ x : \mathbb{R} \mid \text{unit_speed}(x) \} \).
 - Idea: internalize the set of time-lines (clock behaviors).
 - What is a clock behavior (on an external interval)?
 - It is an internal interval, moving along at unit speed.

- The theory has ten axioms, e.g. that \(\text{Time} \) is an \(\mathbb{R} \)-torsor:
 - \(\forall (t : \text{Time})(r : \mathbb{R}). t + r \in \text{Time} \),
 - \(\forall (t_1, t_2 : \text{Time}). \exists! (r : \mathbb{R}). t_1 + r = t_2 \).

Sound semantics in \(\mathcal{B} \):
- We already had \(\text{Time} \in \mathcal{B} \) externally.
- Check that with that interpretation, the ten axioms hold.
Aside: relation to other temporal logics

There are other, widely used, temporal logics.

- They involve modalities like “Until” and “Since”.
- Completeness results like Kamp’s theorem:
 - Equivalence with “first-order monadic logic of order” $FO(\prec)$

Monadic doesn’t mean monad, it means there is one type: Time, and every predicate symbol is unary $P(t)$ only.

Time is ordered: we have a relation \prec on Time.

The logic is otherwise first-order and boolean.

Example: $\forall t. P(t) \Rightarrow \exists t'. t < t' \land Q(t)$.

TTT is pretty different: it’s a type theory; we have many different types (sheaves).

We have a higher order logic, with no “monadic”-type restrictions.

We can embed $FO(\prec)$ into our language (just $\neg\neg$ everything).

Trade-off: TTT is much more expressive; much less “automatable.”
Aside: relation to other temporal logics

There are other, widely used, temporal logics.
- They involve modalities like “Until” and “Since”.
- Completeness results like Kamp’s theorem:
 - Equivalence with “first-order monadic logic of order” $FO(<)$
 - Monadic doesn’t mean monad,
 - It means there is one type: Time,
 - And every predicate symbol is unary $P(t)$ only.
 - Time is ordered: we have a relation $<$ on Time.
 - The logic is otherwise first-order and boolean.
- Example: $\forall t. P(t) \Rightarrow \exists t’. t < t’ \land Q(t)$.
Aside: relation to other temporal logics

There are other, widely used, temporal logics.

- They involve modalities like “Until” and “Since”.
- Completeness results like Kamp’s theorem:
 - Equivalence with “first-order monadic logic of order” $FO(<)$
 - Monadic doesn’t mean monad,
 - It means there is one type: Time,
 - And every predicate symbol is unary $P(t)$ only.
 - Time is ordered: we have a relation $<$ on Time.
 - The logic is otherwise first-order and boolean.
 - Example: $\forall t. P(t) \Rightarrow \exists t'. t < t' \land Q(t)$.

TTT is pretty different:

- It’s a type theory; we have many different types (sheaves).
- We have a higher order logic, with no “monadic”-type restrictions.
- We can embed $FO(<)$ into our language (just $\neg\neg$ everything).
- Trade-off: TTT is much more expressive; much less “automatable”.
Temporal type theory

A finitely-presented language with semantics in \mathcal{B}

Modalities, $@$ and π

There are a number of useful modalities (Lawvere-Tierney topologies).

- Modalities are internal monads $j : \Omega \to \Omega$.
 - That is, $P \Rightarrow jP$, $jjP \Rightarrow jP$, $j(P \land Q) \iff (jP \land jQ)$.
 - One-to-one correspondence $\{\text{modalities}\} \cong \{\text{subtoposes}\}$.
Modalities, \(\mathcal{O}\) and \(\pi\)

There are a number of useful modalities (Lawvere-Tierney topologies).

- Modalities are internal monads \(j : \Omega \rightarrow \Omega\).
- That is, \(P \Rightarrow jP\), \(jjP \Rightarrow jP\), \(j(P \land Q) \Leftrightarrow (jP \land jQ)\).
- One-to-one correspondence \(
\{\text{modalities}\} \cong \{\text{subtoposes}\}\).

Example 1,2: in the context of \(t : \text{Time}\), have \(\downarrow^t_{[a,b]}\), \(\mathcal{O}^t_{[a,b]} : \Omega \rightarrow \Omega\).

- \(\downarrow^t_{[a,b]}P := P \lor (a < t \lor t < b)\).
- \(\mathcal{O}^t_{[a,b]}P := (P \Rightarrow (a < t \lor t < b)) \Rightarrow (a < t \lor t < b)\).

These are hard to read, but correspond to useful subtoposes:

- \(\mathcal{O}^t_{[a,b]}\) corresponds to single point subtopos \([a, b]\) \(\subseteq \mathbb{IR}\).
- \(\downarrow^t_{[a,b]}\) corresponds to its closure \(\downarrow [a, b] \subseteq \mathbb{IR}\).
Modalities, \odot and π

There are a number of useful modalities (Lawvere-Tierney topologies).

- Modalities are internal monads $j : \Omega \to \Omega$.
- That is, $P \Rightarrow jP, \quad jjP \Rightarrow jP, \quad j(P \land Q) \leftrightarrow (jP \land jQ)$.
- One-to-one correspondence $\{\text{modalities}\} \cong \{\text{subtoposes}\}$.

Example 1,2: in the context of $t : \text{Time}$, have $\downarrow_{[a,b]}^t, \odot_{[a,b]}^t : \Omega \to \Omega$.

- $\downarrow_{[a,b]}^t P := P \lor (a < t \lor t < b)$.
- $\odot_{[a,b]}^t P := (P \Rightarrow (a < t \lor t < b)) \Rightarrow (a < t \lor t < b)$.

These are hard to read, but correspond to useful subtoposes:

- $\odot_{[a,b]}^t$ corresponds to single point subtopos $\{[a, b]\} \subseteq \mathbb{IR}$.
- $\downarrow_{[a,b]}^t$ corresponds to its closure $\downarrow [a, b] \subseteq \mathbb{IR}$.

Example 3: In empty context we have $\pi : \Omega \to \Omega$.

- $\pi P := \forall (t : \text{Time}). \odot_{[0,0]}^t P$.
- Corresponds to the dense subtopos $\mathbb{R}/\searrow \subseteq \mathbb{IR}/\searrow$.
Modalities, \(\Box \) and \(\pi \)

There are a number of useful modalities (Lawvere-Tierney topologies).

- Modalities are internal monads \(j : \Omega \to \Omega \).
 - That is, \(P \Rightarrow jP, \; jjP \Rightarrow jP, \; j(P \land Q) \iff (jP \land jQ) \).
 - One-to-one correspondence \(\{ \text{modalities} \} \cong \{ \text{subtoposes} \} \).

- Example 1,2: in the context of \(t : \text{Time} \), have \(\downarrow^t_{[a,b]}, \Box^t_{[a,b]} : \Omega \to \Omega \).
 - \(\downarrow^t_{[a,b]} P := P \lor (a < t \lor t < b) \).
 - \(\Box^t_{[a,b]} P := (P \Rightarrow (a < t \lor t < b)) \Rightarrow (a < t \lor t < b) \).
 - These are hard to read, but correspond to useful subtoposes:
 - \(\Box^t_{[a,b]} \) corresponds to single point subtopos \(\{ [a, b] \} \subseteq \mathbb{R} \).
 - \(\downarrow^t_{[a,b]} \) corresponds to its closure \(\downarrow [a, b] \subseteq \mathbb{R} \).

- Example 3: In empty context we have \(\pi : \Omega \to \Omega \).
 - \(\pi P := \forall (t : \text{Time}). \Box^t_{[0,0]} P \).
 - Corresponds to the dense subtopos \(\mathbb{R}/_\triangleright \subseteq \mathbb{IR}/_\triangleright \).

We can use these modalities to define local Dedekind numeric types.
Local Dedekind numeric types

For any j, we can define $\mathbb{R}_j, \bar{\mathbb{R}}_j, \bar{\bar{\mathbb{R}}}_j, \mathbb{R}_j$, etc.
Local Dedekind numeric types

For any j, we can define \mathbb{R}_j, $\mathbb{R}_\bar{\迄今}$, $\mathbb{R}_{\bar{\迄今}}$, \mathbb{R}_j, etc.

- j-logic: replace all connectives/quantifiers with their j-counterparts.
 - Each connective / quantifier satisfies a universal property,
 - Want same univ. property on j-closed propositions $P, Q \in \Omega_j$.
 - I.e. reflect logic of j-subtopos \mathcal{B}_j into \mathcal{B}.
 - Example: define j-logic versions of Dedekind numeric types.
Local Dedekind numeric types

For any j, we can define $\mathbb{R}_j, \bar{\mathbb{R}}_j, \tilde{\mathbb{R}}_j, \mathbb{R}_j$, etc.

- j-logic: replace all connectives/quantifiers with their j-counterparts.
 - Each connective / quantifier satisfies a universal property,
 - Want same univ. property on j-closed propositions $P, Q \in \Omega_j$.
 - I.e. reflect logic of j-subtopos \mathcal{B}_j into \mathcal{B}.
 - Example: define j-logic versions of Dedekind numeric types.

- $\mathbb{R}_j := \{ \delta : \mathbb{Q} \to \Omega_j \mid j\exists q. \delta q \land \forall q. \delta q \iff j\exists q'. q < q' \land \delta q' \}$
 - When $j = \text{id}$ this is lower semicontinuous fns on \mathbb{IR}.
 - When $j = \pi$, it’s lower semicontinuous fns on \mathbb{R}.
 - When $j = @^t_{[a,b]}$, it’s lower semicontinuous fns on a point.
Local Dedekind numeric types

For any j, we can define \mathbb{R}_j, \mathbb{R}_j, \mathbb{R}_j, \mathbb{R}_j, etc.

- j-logic: replace all connectives/quantifiers with their j-counterparts.
 - Each connective / quantifier satisfies a universal property,
 - Want same univ. property on j-closed propositions $P, Q \in \Omega_j$.
 - I.e. reflect logic of j-subtopos \mathcal{B}_j into \mathcal{B}.
 - Example: define j-logic versions of Dedekind numeric types.

- $\mathbb{R}_j := \{ \delta : \mathbb{Q} \rightarrow \Omega_j \mid j \exists q. \delta q \land \forall q. \delta q \leftrightarrow j \exists q'. q < q' \land \delta q' \}$
 - When $j = \text{id}$ this is lower semicontinuous fns on \mathbb{IR}.
 - When $j = \pi$, it’s lower semicontinuous fns on \mathbb{R}.
 - When $j = \circ^t_{[a,b]}$, it’s lower semicontinuous fns on a point.

Now we are equipped to define derivatives.
Derivatives of continuous reals

We can define derivatives internally.

- Semantics of $x : \mathbb{R}_\pi$ is continuous function of (pointwise) time.
- Evaluation of x at a point $r : \mathbb{R}$ is given by $\mathbb{R}[r]x \in \mathbb{R}[r,r]$
- We denote this $x^\@ (r)$.
Derivatives of continuous reals

We can define derivatives internally.

- Semantics of \(x : \mathbb{R}_\pi \) is continuous function of (pointwise) time.
 - Evaluation of \(x \) at a point \(r : \mathbb{R} \) is given by \(\circ \left[r, r \right] x \in \mathbb{R} \circ \left[r, r \right] \)
 - We denote this \(x^{\circ}(r) \).

- We define the derivative of any interval function \(x : \overline{\mathbb{R}}_\pi \).
 - Result is another interval function \(\dot{x} : \overline{\mathbb{R}}_\pi \), namely:
 - \(q_1 < \dot{x} < q_2 \) iff for all \(r_1 < r_2 : \mathbb{R} \),
 \[
 q_1 \ll \frac{x^{\circ}(r_2) - x^{\circ}(r_1)}{r_2 - r_1} \ll q_2.
 \]
Derivatives of continuous reals

We can define derivatives internally.

- Semantics of $x : \mathbb{R}_\pi$ is continuous function of (pointwise) time.
 - Evaluation of x at a point $r : \mathbb{R}$ is given by $\circ_{[r,r]} x \in \mathbb{R} \circ_{[r,r]}$
 - We denote this $x^@ (r)$.

- We define the derivative of any interval function $x : \overline{\mathbb{R}}_\pi$.
 - Result is another interval function $\dot{x} : \overline{\mathbb{R}}_\pi$, namely:
 - $q_1 < \dot{x} < q_2$ iff for all $r_1 < r_2 : \mathbb{R}$,
 $$q_1 \ll \frac{x^@ (r_2) - x^@ (r_1)}{r_2 - r_1} \ll q_2.$$

- Theorem: \dot{x} internally is linear in x and satisfies Leibniz rule.
Derivatives of continuous reals

We can define derivatives internally.

- Semantics of $x : \mathbb{R}_\pi$ is continuous function of (pointwise) time.
 - Evaluation of x at a point $r : \mathbb{R}$ is given by $\odot_{[r,r]} x \in \mathbb{R} \odot[r,r]$.
 - We denote this $x^\odot(r)$.

- We define the derivative of any interval function $x : \bar{\mathbb{R}}_\pi$.
 - Result is another interval function $\dot{x} : \bar{\mathbb{R}}_\pi$, namely:
 - $q_1 < \dot{x} < q_2$ iff for all $r_1 < r_2 : \mathbb{R}$,
 $$ q_1 \ll \frac{x^\odot(r_2) - x^\odot(r_1)}{r_2 - r_1} \ll q_2. $$

- Theorem: \dot{x} internally is linear in x and satisfies Leibniz rule.
- Theorem: \dot{x} externally has semantics of derivative of x.
 - Caveat: \dot{x} is defined for any cts x, even if non-differentiable.
Derivatives of continuous reals

We can define derivatives internally.

- Semantics of $x : \mathbb{R}_\pi$ is continuous function of (pointwise) time.
 - Evaluation of x at a point $r : \mathbb{R}$ is given by $\circ_{[r,r]}^\circ \in \mathbb{R} \circ_{[r,r]}$.
 - We denote this $x^\circ(r)$.
- We define the derivative of any interval function $x : \mathbb{R}_\pi$.
 - Result is another interval function $\dot{x} : \mathbb{R}_\pi$, namely:
 - $q_1 < \dot{x} < q_2$ iff for all $r_1 < r_2 : \mathbb{R}$,
 $$ q_1 \ll \frac{x^\circ(r_2) - x^\circ(r_1)}{r_2 - r_1} \ll q_2. $$

- Theorem: \dot{x} internally is linear in x and satisfies Leibniz rule.
- Theorem: \dot{x} externally has semantics of derivative of x.
 - Caveat: \dot{x} is defined for any cts x, even if non-differentiable.
 - When x is externally differentiable, \dot{x} is its derivative.
 - When not, \dot{x} is interval-valued “very reasonable” notion.
Differential equations

As a logical expression, derivatives work like anything else.

Consider a differential equation, like

\[f(\dot{x}, \ddot{x}, a, b) = 0. \]
Differential equations

As a logical expression, derivatives work like anything else.

- Consider a differential equation, like

\[f(\dot{x}, \ddot{x}, a, b) = 0. \]

- Maybe \(a, b : \mathbb{R}_{\pi} \) are continuous functions of time.
- Regardless, \(f(\dot{x}, \ddot{x}, a, b) = 0 \) is just an equation in the logic.
 - Use it with \(\top, \bot, \neg, \lor, \land, \Rightarrow, \exists, \forall \).
 - Can be combined with any other property.
Outline

1. Introduction
2. The topos \mathcal{B} of behavior types
3. Temporal type theory
4. Application to the NAS
 - A simplified case
 - Combining local contracts for safety guarantee
5. Conclusion

Simplifying the safe separation problem.

- Real problem: safe separation for pairs of planes.
- Components: Radars, pilots, thrusters/actuators.
- Behavior types: Discrete signals, (continuous) diff-eqs, delays.
The problem: safe altitude

Simplifying the safe separation problem.
- Real problem: safe separation for pairs of planes.
 - Components: Radars, pilots, thrusters/actuators.
 - Behavior types: Discrete signals, (continuous) diff-eqs, delays.
- Simplification: safe altitude for one plane.
 - One radar, one pilot, one thruster.
 - Same behavior types: discrete, continuous, delay.
The problem: safe altitude

Simplifying the safe separation problem.

- Real problem: safe separation for pairs of planes.
 - Components: Radars, pilots, thrusters/actuators.
 - Behavior types: Discrete signals, (continuous) diff-eqs, delays.
- Simplification: safe altitude for one plane.
 - One radar, one pilot, one thruster.
 - Same behavior types: discrete, continuous, delay.

Goal: combine disparate guarantees to prove useful result.
Setup

Variables to be used, and their types:

\[t : \text{Time}. \quad T, P : \text{Cmd}. \quad a : \mathbb{R}_\pi. \quad \text{safe, margin, del, rate} : \mathbb{Q}. \]

What these mean:

- \(t : \text{Time.} \) time-line (a clock).
- \(a : \mathbb{R}_\pi. \) altitude (continuously changing).
- \(T : \text{Cmd.} \) TCAS command (occurs at discrete instants).
- \(P : \text{Cmd.} \) pilot’s command (occurs at discrete instants).
- \(\text{safe} : \mathbb{Q}. \) safe altitude (constant).
- \(\text{margin} : \mathbb{Q}. \) margin-of-error (constant).
- \(\text{del} : \mathbb{Q}. \) pilot delay (constant).
- \(\text{rate} : \mathbb{Q}. \) maximal ascent rate (constant).

Behavior contracts

- $t : \text{Time.}$
 - time-line
 - (a clock).
- $a : \mathbb{R}^\pi.$
 - altitude
 - (continuously changing).
- $T : \text{Cmd.}$
 - TCAS command
 - (occurs at discrete instants).
- $P : \text{Cmd.}$
 - pilot’s command
 - (occurs at discrete instants).
- $\text{safe} : Q.$
 - safe altitude
 - (constant).
- $\text{margin} : Q.$
 - margin-of-error
 - (constant).
- $\text{del} : Q.$
 - pilot delay
 - (constant).
- $\text{rate} : Q.$
 - maximal ascent rate
 - (constant).

- $\theta_1 := (\text{margin} > 0) \land (a \geq 0).$
Behavior contracts

- $t : \text{Time.}$
- $a : \mathbb{R}^\tau.$
- $T : \text{Cmd.}$
- $P : \text{Cmd.}$
- $\text{safe} : \mathbb{Q}.$
- $\text{margin} : \mathbb{Q}.$
- $\text{del} : \mathbb{Q}.$
- $\text{rate} : \mathbb{Q}.$

- $\theta_1 := (\text{margin} > 0) \land (a \geq 0).$
- $\theta_2 := (a > \text{safe} + \text{margin} \Rightarrow T = \text{level}).$
- $\theta'_2 := (a < \text{safe} + \text{margin} \Rightarrow T = \text{climb}).$
Behavior contracts

- \(t : \text{Time.} \): time-line (a clock).
- \(a : \mathbb{R}_{\pi}. \): altitude (continuously changing).
- \(T : \text{Cmd.} \): TCAS command (occurs at discrete instants).
- \(P : \text{Cmd.} \): pilot’s command (occurs at discrete instants).
- \(\text{safe} : \mathbb{Q}. \): safe altitude (constant).
- \(\text{margin} : \mathbb{Q}. \): margin-of-error (constant).
- \(\text{del} : \mathbb{Q}. \): pilot delay (constant).
- \(\text{rate} : \mathbb{Q}. \): maximal ascent rate (constant).

\[
\begin{align*}
\theta_1 &:= (\text{margin} > 0) \land (a \geq 0). \\
\theta_2 &:= (a > \text{safe} + \text{margin} \Rightarrow T = \text{level}). \\
\theta'_2 &:= (a < \text{safe} + \text{margin} \Rightarrow T = \text{climb}). \\
\theta_3 &:= (P = \text{level} \Rightarrow \dot{a} = 0) \land (P = \text{climb} \Rightarrow \dot{a} = \text{rate}).
\end{align*}
\]
Behavior contracts

- \(t : \text{Time.} \) : time-line (a clock).
- \(a : \mathbb{R}_{≠} \) : altitude (continuously changing).
- \(T : \text{Cmd.} \) : TCAS command (occurs at discrete instants).
- \(P : \text{Cmd.} \) : pilot’s command (occurs at discrete instants).
- \(\text{safe} : \mathbb{Q.} \) : safe altitude (constant).
- \(\text{margin} : \mathbb{Q.} \) : margin-of-error (constant).
- \(\text{del} : \mathbb{Q.} \) : pilot delay (constant).
- \(\text{rate} : \mathbb{Q.} \) : maximal ascent rate (constant).

- \(θ_1 := (\text{margin} > 0) ∧ (a ≥ 0). \)
- \(θ_2 := (a > \text{safe} + \text{margin} \Rightarrow T = \text{level}). \)
- \(θ_2' := (a < \text{safe} + \text{margin} \Rightarrow T = \text{climb}). \)
- \(θ_3 := (P = \text{level} \Rightarrow \dot{a} = 0) ∧ (P = \text{climb} \Rightarrow \dot{a} = \text{rate}). \)
- \(θ_4 := \text{is_delayed}(\text{del}, T, P). \)

\(θ_4 \) is an abbreviation for a longer logical condition.
Behavior contracts

- $t : \text{Time.}$ time-line (a clock).
- $a : \mathbb{R}_+. \quad \text{altitude (continuously changing).}$
- $T : \text{Cmd.} \quad \text{TCAS command (occurs at discrete instants).}$
- $P : \text{Cmd.} \quad \text{pilot's command (occurs at discrete instants).}$
- safe : $Q. \quad \text{safe altitude (constant).}$
- margin : $Q. \quad \text{margin-of-error (constant).}$
- del : $Q. \quad \text{pilot delay (constant).}$
- rate : $Q. \quad \text{maximal ascent rate (constant).}$

- $\theta_1 := (\text{margin} > 0) \land (a \geq 0).$
- $\theta_2 := (a > \text{safe} + \text{margin} \Rightarrow T = \text{level}).$
- $\theta'_2 := (a < \text{safe} + \text{margin} \Rightarrow T = \text{climb}).$
- $\theta_3 := (P = \text{level} \Rightarrow \dot{a} = 0) \land (P = \text{climb} \Rightarrow \dot{a} = \text{rate}).$
- $\theta_4 := \text{is_delayed}(\text{del}, T, P).$

θ_4 is an abbreviation for a longer logical condition.

- Can prove safe separation
 $$\forall(t : \text{Time}). \, \downarrow_{0}^{t}(t > \text{del} + \frac{\text{safe}}{\text{rate}} \Rightarrow a \geq \text{safe}).$$
Outline

1. Introduction
2. The topos \mathcal{B} of behavior types
3. Temporal type theory
4. Application to the NAS
5. Conclusion
 - Summary
 - Further reading

Temporal Type Theory, https://arxiv.org/abs/1710.10258
Summary

Summary

- Many different formalisms for behavior, but they all occur in time.
 - We say that time occurs in intervals, which can be restricted.
 - Sheaves are behavior types: “what can occur over intervals.”
Idea: topos theory for integrating systems in a big tent framework.

Many different formalisms for behavior, but they all occur in time.
- We say that time occurs in intervals, which can be restricted.
- Sheaves are behavior types: “what can occur over intervals.”

The topos has a native “internal” logic.
- Looks like usual set theory, ∀, ∃, ∧, ∨, ⇒, ¬; use formal methods.
- Has built-in Time object: do temporal logic.
- Internal definition of ODEs, hybrid systems, etc.
- Logically prove sheaf-theoretic behavioral properties.

This temporal type theory is quite general, and fully compositional.
If you’re interested in reading more

- Book (to be published by Springer Berkhäuser).
 - *Temporal Type Theory.*
 - Technical parts, some friendly parts.

Questions and comments are welcome. Thanks!
If you’re interested in reading more

- Book (to be published by Springer Berkhaüser).
 - *Temporal Type Theory*.
 - Freely available: https://arxiv.org/abs/1710.10258
 - Technical parts, some friendly parts.

- Book (probably to be published by Cambridge University Press).
 - *Seven Sketches in Compositionality*.
 - Freely available: https://arxiv.org/abs/1803.05316
 - Chapter 7 is about this material.
 - Friendly!
If you’re interested in reading more

- Book (to be published by Springer Berkhäuser).
 - *Temporal Type Theory.*
 - Freely available: https://arxiv.org/abs/1710.10258
 - Technical parts, some friendly parts.

- Book (probably to be published by Cambridge University Press).
 - *Seven Sketches in Compositionality.*
 - Freely available: https://arxiv.org/abs/1803.05316
 - Chapter 7 is about this material.
 - Friendly!

Questions and comments are welcome. Thanks!